CMSIS-DSP: Corrected Doxygen issues

pull/19/head
Christophe Favergeon 6 years ago
parent 88d1328ee4
commit 33a1f2fe08

@ -2251,7 +2251,6 @@ __STATIC_INLINE q31_t arm_div_q63_to_q31(q63_t num, q31_t den)
* @param[in,out] S points to an instance of the sorting structure.
* @param[in] alg Selected algorithm.
* @param[in] dir Sorting order.
* @param[in] inPlaceFlag In place flag.
*/
void arm_sort_init_f32(
arm_sort_instance_f32 * S,

@ -35,12 +35,6 @@
@ingroup groupStats
*/
/**
@defgroup Max Maximum without index
Computes the maximum value of an array of data.
The function returns only the maximum value and not its position within the array.
*/
/**
@addtogroup Max
@ -138,3 +132,7 @@ void arm_max_no_idx_f32(
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of Max group
*/

@ -29,29 +29,7 @@
#include "arm_math.h"
#include "arm_sorting.h"
/**
@ingroup groupSupport
*/
/**
@defgroup Sorting Vector sorting algorithms
Sort the elements of a vector
There are separate functions for floating-point, Q31, Q15, and Q7 data types.
*/
/**
@addtogroup Sorting
@{
*/
/**
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*/
static void arm_bitonic_sort_core_f32(float32_t *pSrc, uint32_t n, uint8_t dir)
{
@ -903,6 +881,29 @@ static float32x4_t arm_bitonic_sort_4_f32(float32x4_t a, uint8_t dir)
#endif
/**
@ingroup groupSupport
*/
/**
@defgroup Sorting Vector sorting algorithms
Sort the elements of a vector
There are separate functions for floating-point, Q31, Q15, and Q7 data types.
*/
/**
@addtogroup Sorting
@{
*/
/**
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*/
void arm_bitonic_sort_f32(
const arm_sort_instance_f32 * S,
float32_t * pSrc,

@ -29,31 +29,7 @@
#include "arm_math.h"
#include "arm_sorting.h"
/**
@ingroup groupSupport
*/
/**
@addtogroup Sorting
@{
*/
/**
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*
* @par Algorithm
* The heap sort algorithm is a comparison algorithm that
* divides the input array into a sorted and an unsorted region,
* and shrinks the unsorted region by extracting the largest
* element and moving it to the sorted region. A heap data
* structure is used to find the maximum.
*
* @par It's an in-place algorithm. In order to obtain an out-of-place
* function, a memcpy of the source vector is performed.
*/
static void arm_heapify(float32_t * pSrc, uint32_t n, uint32_t i, uint8_t dir)
{
@ -79,6 +55,31 @@ static void arm_heapify(float32_t * pSrc, uint32_t n, uint32_t i, uint8_t dir)
}
}
/**
@ingroup groupSupport
*/
/**
@addtogroup Sorting
@{
*/
/**
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*
* @par Algorithm
* The heap sort algorithm is a comparison algorithm that
* divides the input array into a sorted and an unsorted region,
* and shrinks the unsorted region by extracting the largest
* element and moving it to the sorted region. A heap data
* structure is used to find the maximum.
*
* @par It's an in-place algorithm. In order to obtain an out-of-place
* function, a memcpy of the source vector is performed.
*/
void arm_heap_sort_f32(
const arm_sort_instance_f32 * S,
float32_t * pSrc,

@ -29,31 +29,6 @@
#include "arm_math.h"
#include "arm_sorting.h"
/**
@ingroup groupSupport
*/
/**
@addtogroup Sorting
@{
*/
/**
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*
* @par Algorithm
* The merge sort algorithm is a comparison algorithm that
* divide the input array in sublists and merge them to produce
* longer sorted sublists until there is only one list remaining.
*
* @par A work array is always needed, hence pSrc and pDst cannot be
* equal and the results will be stored in pDst.
*/
static void topDownMerge(float32_t * pA, uint32_t begin, uint32_t middle, uint32_t end, float32_t * pB, uint8_t dir)
{
@ -96,6 +71,32 @@ static void arm_merge_sort_core_f32(float32_t * pB, uint32_t begin, uint32_t end
}
}
/**
@ingroup groupSupport
*/
/**
@addtogroup Sorting
@{
*/
/**
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*
* @par Algorithm
* The merge sort algorithm is a comparison algorithm that
* divide the input array in sublists and merge them to produce
* longer sorted sublists until there is only one list remaining.
*
* @par A work array is always needed, hence pSrc and pDst cannot be
* equal and the results will be stored in pDst.
*/
void arm_merge_sort_f32(
const arm_sort_instance_f32 * S,
float32_t *pSrc,

@ -29,36 +29,7 @@
#include "arm_math.h"
#include "arm_sorting.h"
/**
@ingroup groupSupport
*/
/**
@addtogroup Sorting
@{
*/
/**
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*
* @par Algorithm
* The quick sort algorithm is a comparison algorithm that
* divides the input array into two smaller sub-arrays and
* recursively sort them. An element of the array (the pivot)
* is chosen, all the elements with values smaller than the
* pivot are moved before the pivot, while all elements with
* values greater than the pivot are moved after it (partition).
*
* @par
* In this implementation the Hoare partition scheme has been
* used and the first element has always been chosen as the pivot.
*
* @par It's an in-place algorithm. In order to obtain an out-of-place
* function, a memcpy of the source vector is performed.
*/
static void arm_quick_sort_core_f32(float32_t *pSrc, uint32_t first, uint32_t last, uint8_t dir)
{
@ -138,6 +109,36 @@ static void arm_quick_sort_core_f32(float32_t *pSrc, uint32_t first, uint32_t la
}
/**
@ingroup groupSupport
*/
/**
@addtogroup Sorting
@{
*/
/**
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data
* @param[in] blockSize number of samples to process.
*
* @par Algorithm
* The quick sort algorithm is a comparison algorithm that
* divides the input array into two smaller sub-arrays and
* recursively sort them. An element of the array (the pivot)
* is chosen, all the elements with values smaller than the
* pivot are moved before the pivot, while all elements with
* values greater than the pivot are moved after it (partition).
*
* @par
* In this implementation the Hoare partition scheme has been
* used and the first element has always been chosen as the pivot.
*
* @par It's an in-place algorithm. In order to obtain an out-of-place
* function, a memcpy of the source vector is performed.
*/
void arm_quick_sort_f32(
const arm_sort_instance_f32 * S,
float32_t * pSrc,

@ -30,6 +30,12 @@
#include "arm_sorting.h"
/**
@ingroup groupSupport
*/
/**
* @brief Generic sorting function
*
* @param[in] S points to an instance of the sorting structure.
* @param[in] pSrc points to the block of input data.
* @param[out] pDst points to the block of output data.
@ -73,3 +79,7 @@ void arm_sort_f32(
break;
}
}
/**
* @} end of groupSupport group
*/

@ -33,90 +33,108 @@
*/
/**
* @defgroup SplineInterpolate Cubic Spline Interpolation
*
* Spline interpolation is a method of interpolation where the interpolant
* is a piecewise-defined polynomial called "spline".
*
* \par Introduction
* Given a function f defined on the interval [a,b], a set of n nodes x(i)
* where a=x(1)<x(2)<...<x(n)=b and a set of n values y(i) = f(x(i)),
* a cubic spline interpolant S(x) is defined as: <br>
* <pre>
* S1(x) x(1) < x < x(2)
* S(x) = ...
* Sn-1(x) x(n-1) < x < x(n)
* <\pre><br>
* where<br>
* <pre>
* Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3 i=1, ..., n-1
* <\pre>
*
* \par Algorithm
* Having defined h(i) = x(i+1) - x(i)<br>
* <pre>
* h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)] i=2, ..., n-1
* <\pre><br>
* It is possible to write the previous conditions in matrix form (Ax=B).<br>
* In order to solve the system two boundary conidtions are needed.<br>
* - Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0<br>
* In matrix form:<br>
* <pre>
* | 1 0 0 ... 0 0 0 || c(1) | | 0 |
* | h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
* | ... ... ... ... ... ... ... || ... |=| ... |
* | 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
* | 0 0 0 ... 0 0 1 || c(n) | | 0 |
* </pre><br>
* - Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n)<br>
* In matrix form:<br>
* <pre>
* | 1 -1 0 ... 0 0 0 || c(1) | | 0 |
* | h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
* | ... ... ... ... ... ... ... || ... |=| ... |
* | 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
* | 0 0 0 ... 0 -1 1 || c(n) | | 0 |
* </pre><br>
* A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization
* algorithms (A=LU) can be simplified considerably because a large number of zeros appear
* in regular patterns. The Crout method has been used:<br>
* 1) Solve LZ=B<br>
* <pre>
* u(1,2) = A(1,2)/A(1,1)
* z(1) = B(1)/l(11)
*
* FOR i=2, ..., N-1
* l(i,i) = A(i,i)-A(i,i-1)u(i-1,i)
* u(i,i+1) = a(i,i+1)/l(i,i)
* z(i) = [B(i)-A(i,i-1)z(i-1)]/l(i,i)
*
* l(N,N) = A(N,N)-A(N,N-1)u(N-1,N)
* z(N) = [B(N)-A(N,N-1)z(N-1)]/l(N,N)
* </pre><br>
* 2) Solve UX=Z<br>
* <pre>
* c(N)=z(N)
*
* FOR i=N-1, ..., 1
* c(i)=z(i)-u(i,i+1)c(i+1)
* </pre><br>
* c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials. <br>
* b(i) and d(i) are computed as:<br>
* - b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3 <br>
* - d(i) = [c(i+1)-c(i)]/[3*h(i)] <br>
* Moreover, a(i)=y(i).
*
* \par Usage
* The x input array must be strictly sorted in ascending order and it must
* not contain twice the same value (x(i)<x(i+1)).
*
* \par
* It is possible to compute the interpolated vector for x values outside the
* input range (xq<x(1); xq>x(n)). The coefficients used to compute the y values for
* xq<x(1) are going to be the ones used for the first interval, while for xq>x(n) the
* coefficients used for the last interval.
*
@defgroup SplineInterpolate Cubic Spline Interpolation
Spline interpolation is a method of interpolation where the interpolant
is a piecewise-defined polynomial called "spline".
@par Introduction
Given a function f defined on the interval [a,b], a set of n nodes x(i)
where a=x(1)<x(2)<...<x(n)=b and a set of n values y(i) = f(x(i)),
a cubic spline interpolant S(x) is defined as:
<pre>
S1(x) x(1) < x < x(2)
S(x) = ...
Sn-1(x) x(n-1) < x < x(n)
</pre>
where
<pre>
Si(x) = a_i+b_i(x-xi)+c_i(x-xi)^2+d_i(x-xi)^3 i=1, ..., n-1
</pre>
@par Algorithm
Having defined h(i) = x(i+1) - x(i)
<pre>
h(i-1)c(i-1)+2[h(i-1)+h(i)]c(i)+h(i)c(i+1) = 3/h(i)*[a(i+1)-a(i)]-3/h(i-1)*[a(i)-a(i-1)] i=2, ..., n-1
</pre>
It is possible to write the previous conditions in matrix form (Ax=B).
In order to solve the system two boundary conidtions are needed.
- Natural spline: S1''(x1)=2*c(1)=0 ; Sn''(xn)=2*c(n)=0
In matrix form:
<pre>
| 1 0 0 ... 0 0 0 || c(1) | | 0 |
| h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
| ... ... ... ... ... ... ... || ... |=| ... |
| 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
| 0 0 0 ... 0 0 1 || c(n) | | 0 |
</pre>
- Parabolic runout spline: S1''(x1)=2*c(1)=S2''(x2)=2*c(2) ; Sn-1''(xn-1)=2*c(n-1)=Sn''(xn)=2*c(n)
In matrix form:
<pre>
| 1 -1 0 ... 0 0 0 || c(1) | | 0 |
| h(0) 2[h(0)+h(1)] h(1) ... 0 0 0 || c(2) | | 3/h(2)*[a(3)-a(2)]-3/h(1)*[a(2)-a(1)] |
| ... ... ... ... ... ... ... || ... |=| ... |
| 0 0 0 ... h(n-2) 2[h(n-2)+h(n-1)] h(n-1) || c(n-1) | | 3/h(n-1)*[a(n)-a(n-1)]-3/h(n-2)*[a(n-1)-a(n-2)] |
| 0 0 0 ... 0 -1 1 || c(n) | | 0 |
</pre>
A is a tridiagonal matrix (a band matrix of bandwidth 3) of size N=n+1. The factorization
algorithms (A=LU) can be simplified considerably because a large number of zeros appear
in regular patterns. The Crout method has been used:
1) Solve LZ=B
<pre>
u(1,2) = A(1,2)/A(1,1)
z(1) = B(1)/l(11)
FOR i=2, ..., N-1
l(i,i) = A(i,i)-A(i,i-1)u(i-1,i)
u(i,i+1) = a(i,i+1)/l(i,i)
z(i) = [B(i)-A(i,i-1)z(i-1)]/l(i,i)
l(N,N) = A(N,N)-A(N,N-1)u(N-1,N)
z(N) = [B(N)-A(N,N-1)z(N-1)]/l(N,N)
</pre>
2) Solve UX=Z
<pre>
c(N)=z(N)
FOR i=N-1, ..., 1
c(i)=z(i)-u(i,i+1)c(i+1)
</pre>
c(i) for i=1, ..., n-1 are needed to compute the n-1 polynomials.
b(i) and d(i) are computed as:
- b(i) = [y(i+1)-y(i)]/h(i)-h(i)*[c(i+1)+2*c(i)]/3
- d(i) = [c(i+1)-c(i)]/[3*h(i)]
Moreover, a(i)=y(i).
@par Usage
The x input array must be strictly sorted in ascending order and it must
not contain twice the same value (x(i)<x(i+1)).
@par
It is possible to compute the interpolated vector for x values outside the
input range (xq<x(1); xq>x(n)). The coefficients used to compute the y values for
xq<x(1) are going to be the ones used for the first interval, while for xq>x(n) the
coefficients used for the last interval.
*/
/**
@addtogroup SplineInterpolate
@{

Loading…
Cancel
Save