CMSIS-DSP: Added arm_rfft_fast_f16

pull/19/head
Christophe Favergeon 6 years ago
parent 3129c4e1c2
commit 8b465544a1

@ -75,6 +75,40 @@ extern "C"
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_F16_4096)
extern const float16_t twiddleCoefF16_4096[8192];
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) */
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_32)
extern const float16_t twiddleCoefF16_rfft_32[32];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_64)
extern const float16_t twiddleCoefF16_rfft_64[64];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_128)
extern const float16_t twiddleCoefF16_rfft_128[128];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_256)
extern const float16_t twiddleCoefF16_rfft_256[256];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_512)
extern const float16_t twiddleCoefF16_rfft_512[512];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_1024)
extern const float16_t twiddleCoefF16_rfft_1024[1024];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_2048)
extern const float16_t twiddleCoefF16_rfft_2048[2048];
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_4096)
extern const float16_t twiddleCoefF16_rfft_4096[4096];
#endif
#endif /* ARMAC5 */
#endif /* !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_FFT_ALLOW_TABLES) */

@ -99,6 +99,27 @@ extern "C"
float16_t * p1,
uint8_t ifftFlag,
uint8_t bitReverseFlag);
/**
* @brief Instance structure for the floating-point RFFT/RIFFT function.
*/
typedef struct
{
arm_cfft_instance_f16 Sint; /**< Internal CFFT structure. */
uint16_t fftLenRFFT; /**< length of the real sequence */
const float16_t * pTwiddleRFFT; /**< Twiddle factors real stage */
} arm_rfft_fast_instance_f16 ;
arm_status arm_rfft_fast_init_f16 (
arm_rfft_fast_instance_f16 * S,
uint16_t fftLen);
void arm_rfft_fast_f16(
const arm_rfft_fast_instance_f16 * S,
float16_t * p, float16_t * pOut,
uint8_t ifftFlag);
#endif /* defined(ARM_FLOAT16_SUPPORTED)*/
#ifdef __cplusplus

@ -135,6 +135,15 @@ option(RFFT_F64_512 "rfft f64 512" OFF)
option(RFFT_F64_2048 "rfft f64 2048" OFF)
option(RFFT_F64_8192 "rfft f64 8192" OFF)
option(RFFT_FAST_F16_32 "rfft fast f16 32" OFF)
option(RFFT_FAST_F16_64 "rfft fast f16 64" OFF)
option(RFFT_FAST_F16_128 "rfft fast f16 128" OFF)
option(RFFT_FAST_F16_256 "rfft fast f16 256" OFF)
option(RFFT_FAST_F16_512 "rfft fast f16 512" OFF)
option(RFFT_FAST_F16_1024 "rfft fast f16 1024" OFF)
option(RFFT_FAST_F16_2048 "rfft fast f16 2048" OFF)
option(RFFT_FAST_F16_4096 "rfft fast f16 4096" OFF)
option(RFFT_Q31_32 "rfft q31 32" OFF)
option(RFFT_Q31_64 "rfft q31 64" OFF)
option(RFFT_Q31_128 "rfft q31 128" OFF)

File diff suppressed because it is too large Load Diff

@ -112,7 +112,15 @@ target_sources(CMSISDSPTransform PRIVATE arm_rfft_fast_f64.c)
target_sources(CMSISDSPTransform PRIVATE arm_rfft_fast_init_f64.c)
endif()
if (NOT CONFIGTABLE OR ALLFFT OR RFFT_FAST_F32_32 OR RFFT_FAST_F32_64 OR RFFT_FAST_F32_128
OR RFFT_FAST_F32_256 OR RFFT_FAST_F32_512 OR RFFT_FAST_F32_1024 OR RFFT_FAST_F32_2048
OR RFFT_FAST_F32_4096 )
target_sources(CMSISDSPTransform PRIVATE arm_rfft_fast_f16.c)
target_sources(CMSISDSPTransform PRIVATE arm_rfft_fast_init_f16.c)
target_sources(CMSISDSPTransform PRIVATE arm_cfft_f16.c)
target_sources(CMSISDSPTransform PRIVATE arm_cfft_init_f16.c)
target_sources(CMSISDSPTransform PRIVATE arm_cfft_radix8_f16.c)
endif()
if (NOT CONFIGTABLE OR ALLFFT OR RFFT_F32_128 OR RFFT_F32_512 OR RFFT_F32_2048 OR RFFT_F32_8192)
target_sources(CMSISDSPTransform PRIVATE arm_rfft_init_f32.c)

@ -30,4 +30,6 @@
#include "arm_cfft_init_f16.c"
#include "arm_cfft_radix2_f16.c"
#include "arm_cfft_radix4_f16.c"
#include "arm_rfft_fast_init_f16.c"
#include "arm_rfft_fast_f16.c"
#include "arm_cfft_radix8_f16.c"

@ -0,0 +1,287 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cfft_radix8_f16.c
* Description: Radix-8 Decimation in Frequency CFFT & CIFFT Floating point processing function
*
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/transform_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
/* ----------------------------------------------------------------------
* Internal helper function used by the FFTs
* -------------------------------------------------------------------- */
/**
brief Core function for the floating-point CFFT butterfly process.
param[in,out] pSrc points to the in-place buffer of floating-point data type.
param[in] fftLen length of the FFT.
param[in] pCoef points to the twiddle coefficient buffer.
param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
return none
*/
void arm_radix8_butterfly_f16(
float16_t * pSrc,
uint16_t fftLen,
const float16_t * pCoef,
uint16_t twidCoefModifier)
{
uint32_t ia1, ia2, ia3, ia4, ia5, ia6, ia7;
uint32_t i1, i2, i3, i4, i5, i6, i7, i8;
uint32_t id;
uint32_t n1, n2, j;
float16_t r1, r2, r3, r4, r5, r6, r7, r8;
float16_t t1, t2;
float16_t s1, s2, s3, s4, s5, s6, s7, s8;
float16_t p1, p2, p3, p4;
float16_t co2, co3, co4, co5, co6, co7, co8;
float16_t si2, si3, si4, si5, si6, si7, si8;
const float16_t C81 = 0.70710678118f;
n2 = fftLen;
do
{
n1 = n2;
n2 = n2 >> 3;
i1 = 0;
do
{
i2 = i1 + n2;
i3 = i2 + n2;
i4 = i3 + n2;
i5 = i4 + n2;
i6 = i5 + n2;
i7 = i6 + n2;
i8 = i7 + n2;
r1 = pSrc[2 * i1] + pSrc[2 * i5];
r5 = pSrc[2 * i1] - pSrc[2 * i5];
r2 = pSrc[2 * i2] + pSrc[2 * i6];
r6 = pSrc[2 * i2] - pSrc[2 * i6];
r3 = pSrc[2 * i3] + pSrc[2 * i7];
r7 = pSrc[2 * i3] - pSrc[2 * i7];
r4 = pSrc[2 * i4] + pSrc[2 * i8];
r8 = pSrc[2 * i4] - pSrc[2 * i8];
t1 = r1 - r3;
r1 = r1 + r3;
r3 = r2 - r4;
r2 = r2 + r4;
pSrc[2 * i1] = r1 + r2;
pSrc[2 * i5] = r1 - r2;
r1 = pSrc[2 * i1 + 1] + pSrc[2 * i5 + 1];
s5 = pSrc[2 * i1 + 1] - pSrc[2 * i5 + 1];
r2 = pSrc[2 * i2 + 1] + pSrc[2 * i6 + 1];
s6 = pSrc[2 * i2 + 1] - pSrc[2 * i6 + 1];
s3 = pSrc[2 * i3 + 1] + pSrc[2 * i7 + 1];
s7 = pSrc[2 * i3 + 1] - pSrc[2 * i7 + 1];
r4 = pSrc[2 * i4 + 1] + pSrc[2 * i8 + 1];
s8 = pSrc[2 * i4 + 1] - pSrc[2 * i8 + 1];
t2 = r1 - s3;
r1 = r1 + s3;
s3 = r2 - r4;
r2 = r2 + r4;
pSrc[2 * i1 + 1] = r1 + r2;
pSrc[2 * i5 + 1] = r1 - r2;
pSrc[2 * i3] = t1 + s3;
pSrc[2 * i7] = t1 - s3;
pSrc[2 * i3 + 1] = t2 - r3;
pSrc[2 * i7 + 1] = t2 + r3;
r1 = (r6 - r8) * C81;
r6 = (r6 + r8) * C81;
r2 = (s6 - s8) * C81;
s6 = (s6 + s8) * C81;
t1 = r5 - r1;
r5 = r5 + r1;
r8 = r7 - r6;
r7 = r7 + r6;
t2 = s5 - r2;
s5 = s5 + r2;
s8 = s7 - s6;
s7 = s7 + s6;
pSrc[2 * i2] = r5 + s7;
pSrc[2 * i8] = r5 - s7;
pSrc[2 * i6] = t1 + s8;
pSrc[2 * i4] = t1 - s8;
pSrc[2 * i2 + 1] = s5 - r7;
pSrc[2 * i8 + 1] = s5 + r7;
pSrc[2 * i6 + 1] = t2 - r8;
pSrc[2 * i4 + 1] = t2 + r8;
i1 += n1;
} while (i1 < fftLen);
if (n2 < 8)
break;
ia1 = 0;
j = 1;
do
{
/* index calculation for the coefficients */
id = ia1 + twidCoefModifier;
ia1 = id;
ia2 = ia1 + id;
ia3 = ia2 + id;
ia4 = ia3 + id;
ia5 = ia4 + id;
ia6 = ia5 + id;
ia7 = ia6 + id;
co2 = pCoef[2 * ia1];
co3 = pCoef[2 * ia2];
co4 = pCoef[2 * ia3];
co5 = pCoef[2 * ia4];
co6 = pCoef[2 * ia5];
co7 = pCoef[2 * ia6];
co8 = pCoef[2 * ia7];
si2 = pCoef[2 * ia1 + 1];
si3 = pCoef[2 * ia2 + 1];
si4 = pCoef[2 * ia3 + 1];
si5 = pCoef[2 * ia4 + 1];
si6 = pCoef[2 * ia5 + 1];
si7 = pCoef[2 * ia6 + 1];
si8 = pCoef[2 * ia7 + 1];
i1 = j;
do
{
/* index calculation for the input */
i2 = i1 + n2;
i3 = i2 + n2;
i4 = i3 + n2;
i5 = i4 + n2;
i6 = i5 + n2;
i7 = i6 + n2;
i8 = i7 + n2;
r1 = pSrc[2 * i1] + pSrc[2 * i5];
r5 = pSrc[2 * i1] - pSrc[2 * i5];
r2 = pSrc[2 * i2] + pSrc[2 * i6];
r6 = pSrc[2 * i2] - pSrc[2 * i6];
r3 = pSrc[2 * i3] + pSrc[2 * i7];
r7 = pSrc[2 * i3] - pSrc[2 * i7];
r4 = pSrc[2 * i4] + pSrc[2 * i8];
r8 = pSrc[2 * i4] - pSrc[2 * i8];
t1 = r1 - r3;
r1 = r1 + r3;
r3 = r2 - r4;
r2 = r2 + r4;
pSrc[2 * i1] = r1 + r2;
r2 = r1 - r2;
s1 = pSrc[2 * i1 + 1] + pSrc[2 * i5 + 1];
s5 = pSrc[2 * i1 + 1] - pSrc[2 * i5 + 1];
s2 = pSrc[2 * i2 + 1] + pSrc[2 * i6 + 1];
s6 = pSrc[2 * i2 + 1] - pSrc[2 * i6 + 1];
s3 = pSrc[2 * i3 + 1] + pSrc[2 * i7 + 1];
s7 = pSrc[2 * i3 + 1] - pSrc[2 * i7 + 1];
s4 = pSrc[2 * i4 + 1] + pSrc[2 * i8 + 1];
s8 = pSrc[2 * i4 + 1] - pSrc[2 * i8 + 1];
t2 = s1 - s3;
s1 = s1 + s3;
s3 = s2 - s4;
s2 = s2 + s4;
r1 = t1 + s3;
t1 = t1 - s3;
pSrc[2 * i1 + 1] = s1 + s2;
s2 = s1 - s2;
s1 = t2 - r3;
t2 = t2 + r3;
p1 = co5 * r2;
p2 = si5 * s2;
p3 = co5 * s2;
p4 = si5 * r2;
pSrc[2 * i5] = p1 + p2;
pSrc[2 * i5 + 1] = p3 - p4;
p1 = co3 * r1;
p2 = si3 * s1;
p3 = co3 * s1;
p4 = si3 * r1;
pSrc[2 * i3] = p1 + p2;
pSrc[2 * i3 + 1] = p3 - p4;
p1 = co7 * t1;
p2 = si7 * t2;
p3 = co7 * t2;
p4 = si7 * t1;
pSrc[2 * i7] = p1 + p2;
pSrc[2 * i7 + 1] = p3 - p4;
r1 = (r6 - r8) * C81;
r6 = (r6 + r8) * C81;
s1 = (s6 - s8) * C81;
s6 = (s6 + s8) * C81;
t1 = r5 - r1;
r5 = r5 + r1;
r8 = r7 - r6;
r7 = r7 + r6;
t2 = s5 - s1;
s5 = s5 + s1;
s8 = s7 - s6;
s7 = s7 + s6;
r1 = r5 + s7;
r5 = r5 - s7;
r6 = t1 + s8;
t1 = t1 - s8;
s1 = s5 - r7;
s5 = s5 + r7;
s6 = t2 - r8;
t2 = t2 + r8;
p1 = co2 * r1;
p2 = si2 * s1;
p3 = co2 * s1;
p4 = si2 * r1;
pSrc[2 * i2] = p1 + p2;
pSrc[2 * i2 + 1] = p3 - p4;
p1 = co8 * r5;
p2 = si8 * s5;
p3 = co8 * s5;
p4 = si8 * r5;
pSrc[2 * i8] = p1 + p2;
pSrc[2 * i8 + 1] = p3 - p4;
p1 = co6 * r6;
p2 = si6 * s6;
p3 = co6 * s6;
p4 = si6 * r6;
pSrc[2 * i6] = p1 + p2;
pSrc[2 * i6 + 1] = p3 - p4;
p1 = co4 * t1;
p2 = si4 * t2;
p3 = co4 * t2;
p4 = si4 * t1;
pSrc[2 * i4] = p1 + p2;
pSrc[2 * i4 + 1] = p3 - p4;
i1 += n1;
} while (i1 < fftLen);
j++;
} while (j < n2);
twidCoefModifier <<= 3;
} while (n2 > 7);
}
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

@ -0,0 +1,609 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_rfft_fast_f16.c
* Description: RFFT & RIFFT Floating point process function
*
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/transform_functions_f16.h"
#include "arm_common_tables_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
void stage_rfft_f16(
const arm_rfft_fast_instance_f16 * S,
float16_t * p,
float16_t * pOut)
{
uint32_t k; /* Loop Counter */
float16_t twR, twI; /* RFFT Twiddle coefficients */
const float16_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
float16_t *pA = p; /* increasing pointer */
float16_t *pB = p; /* decreasing pointer */
float16_t xAR, xAI, xBR, xBI; /* temporary variables */
float16_t t1a, t1b; /* temporary variables */
float16_t p0, p1, p2, p3; /* temporary variables */
float16x8x2_t tw,xA,xB;
float16x8x2_t tmp1, tmp2, res;
uint16x8_t vecStridesBkwd;
vecStridesBkwd = vddupq_u16((uint16_t)14, 2);
int blockCnt;
k = (S->Sint).fftLen - 1;
/* Pack first and last sample of the frequency domain together */
xBR = pB[0];
xBI = pB[1];
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++ ;
twI = *pCoeff++ ;
// U1 = XA(1) + XB(1); % It is real
t1a = xBR + xAR ;
// U2 = XB(1) - XA(1); % It is imaginary
t1b = xBI + xAI ;
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
*pOut++ = 0.5f * ( t1a + t1b );
*pOut++ = 0.5f * ( t1a - t1b );
// XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) ));
pB = p + 2*k - 14;
pA += 2;
blockCnt = k >> 3;
while (blockCnt > 0)
{
/*
function X = my_split_rfft(X, ifftFlag)
% X is a series of real numbers
L = length(X);
XC = X(1:2:end) +i*X(2:2:end);
XA = fft(XC);
XB = conj(XA([1 end:-1:2]));
TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
for l = 2:L/2
XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
end
XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
X = XA;
*/
xA = vld2q_f16(pA);
pA += 16;
xB = vld2q_f16(pB);
xB.val[0] = vldrhq_gather_shifted_offset_f16(pB, vecStridesBkwd);
xB.val[1] = vldrhq_gather_shifted_offset_f16(&pB[1], vecStridesBkwd);
xB.val[1] = vnegq_f16(xB.val[1]);
pB -= 16;
tw = vld2q_f16(pCoeff);
pCoeff += 16;
tmp1.val[0] = vaddq_f16(xA.val[0],xB.val[0]);
tmp1.val[1] = vaddq_f16(xA.val[1],xB.val[1]);
tmp2.val[0] = vsubq_f16(xB.val[0],xA.val[0]);
tmp2.val[1] = vsubq_f16(xB.val[1],xA.val[1]);
res.val[0] = vmulq(tw.val[0], tmp2.val[0]);
res.val[0] = vfmsq(res.val[0],tw.val[1], tmp2.val[1]);
res.val[1] = vmulq(tw.val[0], tmp2.val[1]);
res.val[1] = vfmaq(res.val[1], tw.val[1], tmp2.val[0]);
res.val[0] = vaddq_f16(res.val[0],tmp1.val[0] );
res.val[1] = vaddq_f16(res.val[1],tmp1.val[1] );
res.val[0] = vmulq_n_f16(res.val[0], 0.5f);
res.val[1] = vmulq_n_f16(res.val[1], 0.5f);
vst2q_f16(pOut, res);
pOut += 16;
blockCnt--;
}
pB += 14;
blockCnt = k & 7;
while (blockCnt > 0)
{
/*
function X = my_split_rfft(X, ifftFlag)
% X is a series of real numbers
L = length(X);
XC = X(1:2:end) +i*X(2:2:end);
XA = fft(XC);
XB = conj(XA([1 end:-1:2]));
TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
for l = 2:L/2
XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
end
XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
X = XA;
*/
xBI = pB[1];
xBR = pB[0];
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++;
twI = *pCoeff++;
t1a = xBR - xAR ;
t1b = xBI + xAI ;
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
p0 = twR * t1a;
p1 = twI * t1a;
p2 = twR * t1b;
p3 = twI * t1b;
*pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
*pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
pA += 2;
pB -= 2;
blockCnt--;
}
}
/* Prepares data for inverse cfft */
void merge_rfft_f16(
const arm_rfft_fast_instance_f16 * S,
float16_t * p,
float16_t * pOut)
{
uint32_t k; /* Loop Counter */
float16_t twR, twI; /* RFFT Twiddle coefficients */
const float16_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
float16_t *pA = p; /* increasing pointer */
float16_t *pB = p; /* decreasing pointer */
float16_t xAR, xAI, xBR, xBI; /* temporary variables */
float16_t t1a, t1b, r, s, t, u; /* temporary variables */
float16x8x2_t tw,xA,xB;
float16x8x2_t tmp1, tmp2, res;
uint16x8_t vecStridesBkwd;
vecStridesBkwd = vddupq_u16((uint16_t)14, 2);
int blockCnt;
k = (S->Sint).fftLen - 1;
xAR = pA[0];
xAI = pA[1];
pCoeff += 2 ;
*pOut++ = 0.5f * ( xAR + xAI );
*pOut++ = 0.5f * ( xAR - xAI );
pB = p + 2*k - 14;
pA += 2 ;
blockCnt = k >> 3;
while (blockCnt > 0)
{
/* G is half of the frequency complex spectrum */
//for k = 2:N
// Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
xA = vld2q_f16(pA);
pA += 16;
xB = vld2q_f16(pB);
xB.val[0] = vldrhq_gather_shifted_offset_f16(pB, vecStridesBkwd);
xB.val[1] = vldrhq_gather_shifted_offset_f16(&pB[1], vecStridesBkwd);
xB.val[1] = vnegq_f16(xB.val[1]);
pB -= 16;
tw = vld2q_f16(pCoeff);
tw.val[1] = vnegq_f16(tw.val[1]);
pCoeff += 16;
tmp1.val[0] = vaddq_f16(xA.val[0],xB.val[0]);
tmp1.val[1] = vaddq_f16(xA.val[1],xB.val[1]);
tmp2.val[0] = vsubq_f16(xB.val[0],xA.val[0]);
tmp2.val[1] = vsubq_f16(xB.val[1],xA.val[1]);
res.val[0] = vmulq(tw.val[0], tmp2.val[0]);
res.val[0] = vfmsq(res.val[0],tw.val[1], tmp2.val[1]);
res.val[1] = vmulq(tw.val[0], tmp2.val[1]);
res.val[1] = vfmaq(res.val[1], tw.val[1], tmp2.val[0]);
res.val[0] = vaddq_f16(res.val[0],tmp1.val[0] );
res.val[1] = vaddq_f16(res.val[1],tmp1.val[1] );
res.val[0] = vmulq_n_f16(res.val[0], 0.5f);
res.val[1] = vmulq_n_f16(res.val[1], 0.5f);
vst2q_f16(pOut, res);
pOut += 16;
blockCnt--;
}
pB += 14;
blockCnt = k & 7;
while (blockCnt > 0)
{
/* G is half of the frequency complex spectrum */
//for k = 2:N
// Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
xBI = pB[1] ;
xBR = pB[0] ;
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++;
twI = *pCoeff++;
t1a = xAR - xBR ;
t1b = xAI + xBI ;
r = twR * t1a;
s = twI * t1b;
t = twI * t1a;
u = twR * t1b;
// real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
// imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
*pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
*pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
pA += 2;
pB -= 2;
blockCnt--;
}
}
#else
void stage_rfft_f16(
const arm_rfft_fast_instance_f16 * S,
float16_t * p,
float16_t * pOut)
{
uint32_t k; /* Loop Counter */
float16_t twR, twI; /* RFFT Twiddle coefficients */
const float16_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
float16_t *pA = p; /* increasing pointer */
float16_t *pB = p; /* decreasing pointer */
float16_t xAR, xAI, xBR, xBI; /* temporary variables */
float16_t t1a, t1b; /* temporary variables */
float16_t p0, p1, p2, p3; /* temporary variables */
k = (S->Sint).fftLen - 1;
/* Pack first and last sample of the frequency domain together */
xBR = pB[0];
xBI = pB[1];
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++ ;
twI = *pCoeff++ ;
// U1 = XA(1) + XB(1); % It is real
t1a = xBR + xAR ;
// U2 = XB(1) - XA(1); % It is imaginary
t1b = xBI + xAI ;
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
*pOut++ = 0.5f * ( t1a + t1b );
*pOut++ = 0.5f * ( t1a - t1b );
// XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) ));
pB = p + 2*k;
pA += 2;
do
{
/*
function X = my_split_rfft(X, ifftFlag)
% X is a series of real numbers
L = length(X);
XC = X(1:2:end) +i*X(2:2:end);
XA = fft(XC);
XB = conj(XA([1 end:-1:2]));
TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
for l = 2:L/2
XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
end
XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
X = XA;
*/
xBI = pB[1];
xBR = pB[0];
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++;
twI = *pCoeff++;
t1a = xBR - xAR ;
t1b = xBI + xAI ;
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
p0 = twR * t1a;
p1 = twI * t1a;
p2 = twR * t1b;
p3 = twI * t1b;
*pOut++ = 0.5f * (xAR + xBR + p0 + p3 ); //xAR
*pOut++ = 0.5f * (xAI - xBI + p1 - p2 ); //xAI
pA += 2;
pB -= 2;
k--;
} while (k > 0U);
}
/* Prepares data for inverse cfft */
void merge_rfft_f16(
const arm_rfft_fast_instance_f16 * S,
float16_t * p,
float16_t * pOut)
{
uint32_t k; /* Loop Counter */
float16_t twR, twI; /* RFFT Twiddle coefficients */
const float16_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
float16_t *pA = p; /* increasing pointer */
float16_t *pB = p; /* decreasing pointer */
float16_t xAR, xAI, xBR, xBI; /* temporary variables */
float16_t t1a, t1b, r, s, t, u; /* temporary variables */
k = (S->Sint).fftLen - 1;
xAR = pA[0];
xAI = pA[1];
pCoeff += 2 ;
*pOut++ = 0.5f * ( xAR + xAI );
*pOut++ = 0.5f * ( xAR - xAI );
pB = p + 2*k ;
pA += 2 ;
while (k > 0U)
{
/* G is half of the frequency complex spectrum */
//for k = 2:N
// Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
xBI = pB[1] ;
xBR = pB[0] ;
xAR = pA[0];
xAI = pA[1];
twR = *pCoeff++;
twI = *pCoeff++;
t1a = xAR - xBR ;
t1b = xAI + xBI ;
r = twR * t1a;
s = twI * t1b;
t = twI * t1a;
u = twR * t1b;
// real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
// imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
*pOut++ = 0.5f * (xAR + xBR - r - s ); //xAR
*pOut++ = 0.5f * (xAI - xBI + t - u ); //xAI
pA += 2;
pB -= 2;
k--;
}
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@ingroup groupTransforms
*/
/**
@defgroup RealFFT Real FFT Functions
@par
The CMSIS DSP library includes specialized algorithms for computing the
FFT of real data sequences. The FFT is defined over complex data but
in many applications the input is real. Real FFT algorithms take advantage
of the symmetry properties of the FFT and have a speed advantage over complex
algorithms of the same length.
@par
The Fast RFFT algorith relays on the mixed radix CFFT that save processor usage.
@par
The real length N forward FFT of a sequence is computed using the steps shown below.
@par
\image html RFFT.gif "Real Fast Fourier Transform"
@par
The real sequence is initially treated as if it were complex to perform a CFFT.
Later, a processing stage reshapes the data to obtain half of the frequency spectrum
in complex format. Except the first complex number that contains the two real numbers
X[0] and X[N/2] all the data is complex. In other words, the first complex sample
contains two real values packed.
@par
The input for the inverse RFFT should keep the same format as the output of the
forward RFFT. A first processing stage pre-process the data to later perform an
inverse CFFT.
@par
\image html RIFFT.gif "Real Inverse Fast Fourier Transform"
@par
The algorithms for floating-point, Q15, and Q31 data are slightly different
and we describe each algorithm in turn.
@par Floating-point
The main functions are \ref arm_rfft_fast_f16() and \ref arm_rfft_fast_init_f16().
The older functions \ref arm_rfft_f16() and \ref arm_rfft_init_f16() have been deprecated
but are still documented.
@par
The FFT of a real N-point sequence has even symmetry in the frequency domain.
The second half of the data equals the conjugate of the first half flipped in frequency.
Looking at the data, we see that we can uniquely represent the FFT using only N/2 complex numbers.
These are packed into the output array in alternating real and imaginary components:
@par
X = { real[0], imag[0], real[1], imag[1], real[2], imag[2] ...
real[(N/2)-1], imag[(N/2)-1 }
@par
It happens that the first complex number (real[0], imag[0]) is actually
all real. real[0] represents the DC offset, and imag[0] should be 0.
(real[1], imag[1]) is the fundamental frequency, (real[2], imag[2]) is
the first harmonic and so on.
@par
The real FFT functions pack the frequency domain data in this fashion.
The forward transform outputs the data in this form and the inverse
transform expects input data in this form. The function always performs
the needed bitreversal so that the input and output data is always in
normal order. The functions support lengths of [32, 64, 128, ..., 4096]
samples.
@par Q15 and Q31
The real algorithms are defined in a similar manner and utilize N/2 complex
transforms behind the scenes.
@par
The complex transforms used internally include scaling to prevent fixed-point
overflows. The overall scaling equals 1/(fftLen/2).
Due to the use of complex transform internally, the source buffer is
modified by the rfft.
@par
A separate instance structure must be defined for each transform used but
twiddle factor and bit reversal tables can be reused.
@par
There is also an associated initialization function for each data type.
The initialization function performs the following operations:
- Sets the values of the internal structure fields.
- Initializes twiddle factor table and bit reversal table pointers.
- Initializes the internal complex FFT data structure.
@par
Use of the initialization function is optional **except for MVE versions where it is mandatory**.
If you don't use the initialization functions, then the structures should be initialized with code
similar to the one below:
<pre>
arm_rfft_instance_q31 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
arm_rfft_instance_q15 S = {fftLenReal, fftLenBy2, ifftFlagR, bitReverseFlagR, twidCoefRModifier, pTwiddleAReal, pTwiddleBReal, pCfft};
</pre>
where <code>fftLenReal</code> is the length of the real transform;
<code>fftLenBy2</code> length of the internal complex transform (fftLenReal/2).
<code>ifftFlagR</code> Selects forward (=0) or inverse (=1) transform.
<code>bitReverseFlagR</code> Selects bit reversed output (=0) or normal order
output (=1).
<code>twidCoefRModifier</code> stride modifier for the twiddle factor table.
The value is based on the FFT length;
<code>pTwiddleAReal</code>points to the A array of twiddle coefficients;
<code>pTwiddleBReal</code>points to the B array of twiddle coefficients;
<code>pCfft</code> points to the CFFT Instance structure. The CFFT structure
must also be initialized.
@par
Note that with MVE versions you can't initialize instance structures directly and **must
use the initialization function**.
*/
/**
@addtogroup RealFFT
@{
*/
/**
@brief Processing function for the floating-point real FFT.
@param[in] S points to an arm_rfft_fast_instance_f16 structure
@param[in] p points to input buffer (Source buffer is modified by this function.)
@param[in] pOut points to output buffer
@param[in] ifftFlag
- value = 0: RFFT
- value = 1: RIFFT
@return none
*/
void arm_rfft_fast_f16(
const arm_rfft_fast_instance_f16 * S,
float16_t * p,
float16_t * pOut,
uint8_t ifftFlag)
{
const arm_cfft_instance_f16 * Sint = &(S->Sint);
/* Calculation of Real FFT */
if (ifftFlag)
{
/* Real FFT compression */
merge_rfft_f16(S, p, pOut);
/* Complex radix-4 IFFT process */
arm_cfft_f16( Sint, pOut, ifftFlag, 1);
}
else
{
/* Calculation of RFFT of input */
arm_cfft_f16( Sint, p, ifftFlag, 1);
/* Real FFT extraction */
stage_rfft_f16(S, p, pOut);
}
}
/**
* @} end of RealFFT group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

@ -0,0 +1,355 @@
/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_rfft_fast_init_f16.c
* Description: Split Radix Decimation in Frequency CFFT Floating point processing function
*
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/transform_functions_f16.h"
#include "arm_common_tables_f16.h"
#include "arm_const_structs_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
/**
@ingroup groupTransforms
*/
/**
@addtogroup RealFFT
@{
*/
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_16) && defined(ARM_TABLE_BITREVIDX_FLT_16) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_32))
/**
@private
@brief Initialization function for the 32pt floating-point real FFT.
@param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
*/
static arm_status arm_rfft_32_fast_init_f16( arm_rfft_fast_instance_f16 * S ) {
arm_status status;
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
status=arm_cfft_init_f16(&(S->Sint),16);
if (status != ARM_MATH_SUCCESS)
{
return(status);
}
S->fftLenRFFT = 32U;
S->pTwiddleRFFT = (float16_t *) twiddleCoefF16_rfft_32;
return ARM_MATH_SUCCESS;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_32) && defined(ARM_TABLE_BITREVIDX_FLT_32) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_64))
/**
@private
@brief Initialization function for the 64pt floating-point real FFT.
@param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
*/
static arm_status arm_rfft_64_fast_init_f16( arm_rfft_fast_instance_f16 * S ) {
arm_status status;
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
status=arm_cfft_init_f16(&(S->Sint),32);
if (status != ARM_MATH_SUCCESS)
{
return(status);
}
S->fftLenRFFT = 64U;
S->pTwiddleRFFT = (float16_t *) twiddleCoefF16_rfft_64;
return ARM_MATH_SUCCESS;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_64) && defined(ARM_TABLE_BITREVIDX_FLT_64) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_128))
/**
@private
@brief Initialization function for the 128pt floating-point real FFT.
@param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
*/
static arm_status arm_rfft_128_fast_init_f16( arm_rfft_fast_instance_f16 * S ) {
arm_status status;
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
status=arm_cfft_init_f16(&(S->Sint),64);
if (status != ARM_MATH_SUCCESS)
{
return(status);
}
S->fftLenRFFT = 128;
S->pTwiddleRFFT = (float16_t *) twiddleCoefF16_rfft_128;
return ARM_MATH_SUCCESS;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_128) && defined(ARM_TABLE_BITREVIDX_FLT_128) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_256))
/**
@private
@brief Initialization function for the 256pt floating-point real FFT.
@param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
*/
static arm_status arm_rfft_256_fast_init_f16( arm_rfft_fast_instance_f16 * S ) {
arm_status status;
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
status=arm_cfft_init_f16(&(S->Sint),128);
if (status != ARM_MATH_SUCCESS)
{
return(status);
}
S->fftLenRFFT = 256U;
S->pTwiddleRFFT = (float16_t *) twiddleCoefF16_rfft_256;
return ARM_MATH_SUCCESS;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_256) && defined(ARM_TABLE_BITREVIDX_FLT_256) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_512))
/**
@private
@brief Initialization function for the 512pt floating-point real FFT.
@param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
*/
static arm_status arm_rfft_512_fast_init_f16( arm_rfft_fast_instance_f16 * S ) {
arm_status status;
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
status=arm_cfft_init_f16(&(S->Sint),256);
if (status != ARM_MATH_SUCCESS)
{
return(status);
}
S->fftLenRFFT = 512U;
S->pTwiddleRFFT = (float16_t *) twiddleCoefF16_rfft_512;
return ARM_MATH_SUCCESS;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_512) && defined(ARM_TABLE_BITREVIDX_FLT_512) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_1024))
/**
@private
@brief Initialization function for the 1024pt floating-point real FFT.
@param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
*/
static arm_status arm_rfft_1024_fast_init_f16( arm_rfft_fast_instance_f16 * S ) {
arm_status status;
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
status=arm_cfft_init_f16(&(S->Sint),512);
if (status != ARM_MATH_SUCCESS)
{
return(status);
}
S->fftLenRFFT = 1024U;
S->pTwiddleRFFT = (float16_t *) twiddleCoefF16_rfft_1024;
return ARM_MATH_SUCCESS;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_1024) && defined(ARM_TABLE_BITREVIDX_FLT_1024) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_2048))
/**
@private
@brief Initialization function for the 2048pt floating-point real FFT.
@param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
*/
static arm_status arm_rfft_2048_fast_init_f16( arm_rfft_fast_instance_f16 * S ) {
arm_status status;
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
status=arm_cfft_init_f16(&(S->Sint),1024);
if (status != ARM_MATH_SUCCESS)
{
return(status);
}
S->fftLenRFFT = 2048U;
S->pTwiddleRFFT = (float16_t *) twiddleCoefF16_rfft_2048;
return ARM_MATH_SUCCESS;
}
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_2048) && defined(ARM_TABLE_BITREVIDX_FLT_2048) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_4096))
/**
@private
* @brief Initialization function for the 4096pt floating-point real FFT.
* @param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
*/
static arm_status arm_rfft_4096_fast_init_f16( arm_rfft_fast_instance_f16 * S ) {
arm_status status;
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
status=arm_cfft_init_f16(&(S->Sint),2048);
if (status != ARM_MATH_SUCCESS)
{
return(status);
}
S->fftLenRFFT = 4096U;
S->pTwiddleRFFT = (float16_t *) twiddleCoefF16_rfft_4096;
return ARM_MATH_SUCCESS;
}
#endif
/**
@brief Initialization function for the floating-point real FFT.
@param[in,out] S points to an arm_rfft_fast_instance_f16 structure
@param[in] fftLen length of the Real Sequence
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_ARGUMENT_ERROR : <code>fftLen</code> is not a supported length
@par Description
The parameter <code>fftLen</code> specifies the length of RFFT/CIFFT process.
Supported FFT Lengths are 32, 64, 128, 256, 512, 1024, 2048, 4096.
@par
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.
*/
arm_status arm_rfft_fast_init_f16(
arm_rfft_fast_instance_f16 * S,
uint16_t fftLen)
{
typedef arm_status(*fft_init_ptr)( arm_rfft_fast_instance_f16 *);
fft_init_ptr fptr = 0x0;
switch (fftLen)
{
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_2048) && defined(ARM_TABLE_BITREVIDX_FLT_2048) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_4096))
case 4096U:
fptr = arm_rfft_4096_fast_init_f16;
break;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_1024) && defined(ARM_TABLE_BITREVIDX_FLT_1024) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_2048))
case 2048U:
fptr = arm_rfft_2048_fast_init_f16;
break;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_512) && defined(ARM_TABLE_BITREVIDX_FLT_512) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_1024))
case 1024U:
fptr = arm_rfft_1024_fast_init_f16;
break;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_256) && defined(ARM_TABLE_BITREVIDX_FLT_256) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_512))
case 512U:
fptr = arm_rfft_512_fast_init_f16;
break;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_128) && defined(ARM_TABLE_BITREVIDX_FLT_128) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_256))
case 256U:
fptr = arm_rfft_256_fast_init_f16;
break;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_64) && defined(ARM_TABLE_BITREVIDX_FLT_64) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_128))
case 128U:
fptr = arm_rfft_128_fast_init_f16;
break;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_32) && defined(ARM_TABLE_BITREVIDX_FLT_32) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_64))
case 64U:
fptr = arm_rfft_64_fast_init_f16;
break;
#endif
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F16_16) && defined(ARM_TABLE_BITREVIDX_FLT_16) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F16_32))
case 32U:
fptr = arm_rfft_32_fast_init_f16;
break;
#endif
default:
return ARM_MATH_ARGUMENT_ERROR;
}
if( ! fptr ) return ARM_MATH_ARGUMENT_ERROR;
return fptr( S );
}
/**
@} end of RealFFT group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */

@ -438,6 +438,59 @@ if (CONFIGTABLE AND RFFT_FAST_F32_4096)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F32_4096)
endif()
#######################################
#
# RFFT FAST F16
#
if (CONFIGTABLE AND RFFT_FAST_F16_32)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_F16_16)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_BITREVIDX_FLT_16)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F16_32)
endif()
if (CONFIGTABLE AND RFFT_FAST_F16_64)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_F16_32)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_BITREVIDX_FLT_32)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F16_64)
endif()
if (CONFIGTABLE AND RFFT_FAST_F16_128)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_F16_64)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_BITREVIDX_FLT_64)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F16_128)
endif()
if (CONFIGTABLE AND RFFT_FAST_F16_256)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_F16_128)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_BITREVIDX_FLT_128)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F16_256)
endif()
if (CONFIGTABLE AND RFFT_FAST_F16_512)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_F16_256)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_BITREVIDX_FLT_256)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F16_512)
endif()
if (CONFIGTABLE AND RFFT_FAST_F16_1024)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_F16_512)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_BITREVIDX_FLT_512)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F16_1024)
endif()
if (CONFIGTABLE AND RFFT_FAST_F16_2048)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_F16_1024)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_BITREVIDX_FLT_1024)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F16_2048)
endif()
if (CONFIGTABLE AND RFFT_FAST_F16_4096)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_F16_2048)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_BITREVIDX_FLT_2048)
target_compile_definitions(${PROJECT} PUBLIC ARM_TABLE_TWIDDLECOEF_RFFT_F16_4096)
endif()
#######################################
#
# RFFT F32

@ -328,6 +328,7 @@ if ((NOT ARMAC5) AND (FLOAT16TESTS) AND ((FLOAT16) OR (MVEF) OR (HELIUM) OR (NEO
set(TESTSRC16
Source/Tests/BasicTestsF16.cpp
Source/Tests/TransformCF16.cpp
Source/Tests/TransformRF16.cpp
)
endif()
endif()

@ -0,0 +1,25 @@
#include "Test.h"
#include "Pattern.h"
#include "dsp/transform_functions_f16.h"
class TransformRF16:public Client::Suite
{
public:
TransformRF16(Testing::testID_t id);
virtual void setUp(Testing::testID_t,std::vector<Testing::param_t>& paramsArgs,Client::PatternMgr *mgr);
virtual void tearDown(Testing::testID_t,Client::PatternMgr *mgr);
private:
#include "TransformRF16_decl.h"
Client::Pattern<float16_t> input;
Client::LocalPattern<float16_t> outputfft;
Client::LocalPattern<float16_t> inputchanged;
Client::RefPattern<float16_t> ref;
arm_rfft_fast_instance_f16 instRfftF16;
int ifft;
};

@ -0,0 +1,473 @@
#include "TransformRF16.h"
#include <stdio.h>
#include "Error.h"
#include "Test.h"
#define SNR_THRESHOLD 58
void TransformRF16::test_rfft_f16()
{
float16_t *inp = input.ptr();
float16_t *tmp = inputchanged.ptr();
float16_t *outp = outputfft.ptr();
memcpy(tmp,inp,sizeof(float16_t)*input.nbSamples());
arm_rfft_fast_f16(
&this->instRfftF16,
tmp,
outp,
this->ifft);
ASSERT_SNR(outputfft,ref,(float16_t)SNR_THRESHOLD);
ASSERT_EMPTY_TAIL(outputfft);
}
void TransformRF16::setUp(Testing::testID_t id,std::vector<Testing::param_t>& paramsArgs,Client::PatternMgr *mgr)
{
(void)paramsArgs;
switch(id)
{
case TransformRF16::TEST_RFFT_F16_1:
input.reload(TransformRF16::INPUTS_RFFT_NOISY_32_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_NOISY_32_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,32);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_17:
input.reload(TransformRF16::INPUTS_RIFFT_NOISY_32_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_NOISY_32_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,32);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_2:
input.reload(TransformRF16::INPUTS_RFFT_NOISY_64_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_NOISY_64_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,64);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_18:
input.reload(TransformRF16::INPUTS_RIFFT_NOISY_64_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_NOISY_64_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,64);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_3:
input.reload(TransformRF16::INPUTS_RFFT_NOISY_128_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_NOISY_128_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,128);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_19:
input.reload(TransformRF16::INPUTS_RIFFT_NOISY_128_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_NOISY_128_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,128);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_4:
input.reload(TransformRF16::INPUTS_RFFT_NOISY_256_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_NOISY_256_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,256);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_20:
input.reload(TransformRF16::INPUTS_RIFFT_NOISY_256_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_NOISY_256_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,256);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_5:
input.reload(TransformRF16::INPUTS_RFFT_NOISY_512_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_NOISY_512_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,512);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_21:
input.reload(TransformRF16::INPUTS_RIFFT_NOISY_512_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_NOISY_512_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,512);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_6:
input.reload(TransformRF16::INPUTS_RFFT_NOISY_1024_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_NOISY_1024_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,1024);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_22:
input.reload(TransformRF16::INPUTS_RIFFT_NOISY_1024_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_NOISY_1024_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,1024);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_7:
input.reload(TransformRF16::INPUTS_RFFT_NOISY_2048_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_NOISY_2048_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,2048);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_23:
input.reload(TransformRF16::INPUTS_RIFFT_NOISY_2048_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_NOISY_2048_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,2048);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_8:
input.reload(TransformRF16::INPUTS_RFFT_NOISY_4096_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_NOISY_4096_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,4096);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_24:
input.reload(TransformRF16::INPUTS_RIFFT_NOISY_4096_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_NOISY_4096_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,4096);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
/* STEP FUNCTIONS */
case TransformRF16::TEST_RFFT_F16_9:
input.reload(TransformRF16::INPUTS_RFFT_STEP_32_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_STEP_32_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,32);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_25:
input.reload(TransformRF16::INPUTS_RIFFT_STEP_32_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_STEP_32_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,32);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_10:
input.reload(TransformRF16::INPUTS_RFFT_STEP_64_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_STEP_64_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,64);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_26:
input.reload(TransformRF16::INPUTS_RIFFT_STEP_64_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_STEP_64_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,64);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_11:
input.reload(TransformRF16::INPUTS_RFFT_STEP_128_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_STEP_128_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,128);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_27:
input.reload(TransformRF16::INPUTS_RIFFT_STEP_128_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_STEP_128_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,128);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_12:
input.reload(TransformRF16::INPUTS_RFFT_STEP_256_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_STEP_256_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,256);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_28:
input.reload(TransformRF16::INPUTS_RIFFT_STEP_256_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_STEP_256_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,256);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_13:
input.reload(TransformRF16::INPUTS_RFFT_STEP_512_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_STEP_512_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,512);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_29:
input.reload(TransformRF16::INPUTS_RIFFT_STEP_512_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_STEP_512_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,512);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_14:
input.reload(TransformRF16::INPUTS_RFFT_STEP_1024_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_STEP_1024_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,1024);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_30:
input.reload(TransformRF16::INPUTS_RIFFT_STEP_1024_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_STEP_1024_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,1024);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_15:
input.reload(TransformRF16::INPUTS_RFFT_STEP_2048_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_STEP_2048_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,2048);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_31:
input.reload(TransformRF16::INPUTS_RIFFT_STEP_2048_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_STEP_2048_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,2048);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
case TransformRF16::TEST_RFFT_F16_16:
input.reload(TransformRF16::INPUTS_RFFT_STEP_4096_F16_ID,mgr);
ref.reload( TransformRF16::REF_RFFT_STEP_4096_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,4096);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=0;
break;
case TransformRF16::TEST_RFFT_F16_32:
input.reload(TransformRF16::INPUTS_RIFFT_STEP_4096_F16_ID,mgr);
ref.reload( TransformRF16::INPUTS_RFFT_STEP_4096_F16_ID,mgr);
arm_rfft_fast_init_f16(&this->instRfftF16 ,4096);
inputchanged.create(input.nbSamples(),TransformRF16::TEMP_F16_ID,mgr);
this->ifft=1;
break;
}
outputfft.create(ref.nbSamples(),TransformRF16::OUTPUT_RFFT_F16_ID,mgr);
}
void TransformRF16::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
(void)id;
outputfft.dump(mgr);
}

@ -200,6 +200,118 @@ group Root {
}
}
suite Transform Real F16 {
class = TransformRF16
folder = TransformF16
Pattern INPUTS_RFFT_NOISY_32_F16_ID : RealInputSamples_Noisy_32_2_f16.txt
Pattern INPUTS_RIFFT_NOISY_32_F16_ID : RealInputIFFTSamples_Noisy_32_2_f16.txt
Pattern REF_RFFT_NOISY_32_F16_ID : RealFFTSamples_Noisy_32_2_f16.txt
Pattern INPUTS_RFFT_NOISY_64_F16_ID : RealInputSamples_Noisy_64_3_f16.txt
Pattern INPUTS_RIFFT_NOISY_64_F16_ID : RealInputIFFTSamples_Noisy_64_3_f16.txt
Pattern REF_RFFT_NOISY_64_F16_ID : RealFFTSamples_Noisy_64_3_f16.txt
Pattern INPUTS_RFFT_NOISY_128_F16_ID : RealInputSamples_Noisy_128_4_f16.txt
Pattern INPUTS_RIFFT_NOISY_128_F16_ID : RealInputIFFTSamples_Noisy_128_4_f16.txt
Pattern REF_RFFT_NOISY_128_F16_ID : RealFFTSamples_Noisy_128_4_f16.txt
Pattern INPUTS_RFFT_NOISY_256_F16_ID : RealInputSamples_Noisy_256_5_f16.txt
Pattern INPUTS_RIFFT_NOISY_256_F16_ID : RealInputIFFTSamples_Noisy_256_5_f16.txt
Pattern REF_RFFT_NOISY_256_F16_ID : RealFFTSamples_Noisy_256_5_f16.txt
Pattern INPUTS_RFFT_NOISY_512_F16_ID : RealInputSamples_Noisy_512_6_f16.txt
Pattern INPUTS_RIFFT_NOISY_512_F16_ID : RealInputIFFTSamples_Noisy_512_6_f16.txt
Pattern REF_RFFT_NOISY_512_F16_ID : RealFFTSamples_Noisy_512_6_f16.txt
Pattern INPUTS_RFFT_NOISY_1024_F16_ID : RealInputSamples_Noisy_1024_7_f16.txt
Pattern INPUTS_RIFFT_NOISY_1024_F16_ID : RealInputIFFTSamples_Noisy_1024_7_f16.txt
Pattern REF_RFFT_NOISY_1024_F16_ID : RealFFTSamples_Noisy_1024_7_f16.txt
Pattern INPUTS_RFFT_NOISY_2048_F16_ID : RealInputSamples_Noisy_2048_8_f16.txt
Pattern INPUTS_RIFFT_NOISY_2048_F16_ID : RealInputIFFTSamples_Noisy_2048_8_f16.txt
Pattern REF_RFFT_NOISY_2048_F16_ID : RealFFTSamples_Noisy_2048_8_f16.txt
Pattern INPUTS_RFFT_NOISY_4096_F16_ID : RealInputSamples_Noisy_4096_9_f16.txt
Pattern INPUTS_RIFFT_NOISY_4096_F16_ID : RealInputIFFTSamples_Noisy_4096_9_f16.txt
Pattern REF_RFFT_NOISY_4096_F16_ID : RealFFTSamples_Noisy_4096_9_f16.txt
Pattern INPUTS_RFFT_STEP_16_F16_ID : RealInputSamples_Step_16_10_f16.txt
Pattern INPUTS_RIFFT_STEP_16_F16_ID : RealInputIFFTSamples_Step_16_10_f16.txt
Pattern REF_RFFT_STEP_16_F16_ID : RealFFTSamples_Step_16_10_f16.txt
Pattern INPUTS_RFFT_STEP_32_F16_ID : RealInputSamples_Step_32_11_f16.txt
Pattern INPUTS_RIFFT_STEP_32_F16_ID : RealInputIFFTSamples_Step_32_11_f16.txt
Pattern REF_RFFT_STEP_32_F16_ID : RealFFTSamples_Step_32_11_f16.txt
Pattern INPUTS_RFFT_STEP_64_F16_ID : RealInputSamples_Step_64_12_f16.txt
Pattern INPUTS_RIFFT_STEP_64_F16_ID : RealInputIFFTSamples_Step_64_12_f16.txt
Pattern REF_RFFT_STEP_64_F16_ID : RealFFTSamples_Step_64_12_f16.txt
Pattern INPUTS_RFFT_STEP_128_F16_ID : RealInputSamples_Step_128_13_f16.txt
Pattern INPUTS_RIFFT_STEP_128_F16_ID : RealInputIFFTSamples_Step_128_13_f16.txt
Pattern REF_RFFT_STEP_128_F16_ID : RealFFTSamples_Step_128_13_f16.txt
Pattern INPUTS_RFFT_STEP_256_F16_ID : RealInputSamples_Step_256_14_f16.txt
Pattern INPUTS_RIFFT_STEP_256_F16_ID : RealInputIFFTSamples_Step_256_14_f16.txt
Pattern REF_RFFT_STEP_256_F16_ID : RealFFTSamples_Step_256_14_f16.txt
Pattern INPUTS_RFFT_STEP_512_F16_ID : RealInputSamples_Step_512_15_f16.txt
Pattern INPUTS_RIFFT_STEP_512_F16_ID : RealInputIFFTSamples_Step_512_15_f16.txt
Pattern REF_RFFT_STEP_512_F16_ID : RealFFTSamples_Step_512_15_f16.txt
Pattern INPUTS_RFFT_STEP_1024_F16_ID : RealInputSamples_Step_1024_16_f16.txt
Pattern INPUTS_RIFFT_STEP_1024_F16_ID : RealInputIFFTSamples_Step_1024_16_f16.txt
Pattern REF_RFFT_STEP_1024_F16_ID : RealFFTSamples_Step_1024_16_f16.txt
Pattern INPUTS_RFFT_STEP_2048_F16_ID : RealInputSamples_Step_2048_17_f16.txt
Pattern INPUTS_RIFFT_STEP_2048_F16_ID : RealInputIFFTSamples_Step_2048_17_f16.txt
Pattern REF_RFFT_STEP_2048_F16_ID : RealFFTSamples_Step_2048_17_f16.txt
Pattern INPUTS_RFFT_STEP_4096_F16_ID : RealInputSamples_Step_4096_18_f16.txt
Pattern INPUTS_RIFFT_STEP_4096_F16_ID : RealInputIFFTSamples_Step_4096_18_f16.txt
Pattern REF_RFFT_STEP_4096_F16_ID : RealFFTSamples_Step_4096_18_f16.txt
Output OUTPUT_RFFT_F16_ID : RealFFTSamples
Output TEMP_F16_ID : Temp
Functions {
rfft_noisy_32_f16:test_rfft_f16
rfft_noisy_64_f16:test_rfft_f16
rfft_noisy_128_f16:test_rfft_f16
rfft_noisy_256_f16:test_rfft_f16
rfft_noisy_512_f16:test_rfft_f16
rfft_noisy_1024_f16:test_rfft_f16
rfft_noisy_2048_f16:test_rfft_f16
rfft_noisy_4096_f16:test_rfft_f16
rfft_step_32_f16:test_rfft_f16
rfft_step_64_f16:test_rfft_f16
rfft_step_128_f16:test_rfft_f16
rfft_step_256_f16:test_rfft_f16
rfft_step_512_f16:test_rfft_f16
rfft_step_1024_f16:test_rfft_f16
rfft_step_2048_f16:test_rfft_f16
rfft_step_4096_f16:test_rfft_f16
rifft_noisy_32_f16:test_rfft_f16
rifft_noisy_64_f16:test_rfft_f16
rifft_noisy_128_f16:test_rfft_f16
rifft_noisy_256_f16:test_rfft_f16
rifft_noisy_512_f16:test_rfft_f16
rifft_noisy_1024_f16:test_rfft_f16
rifft_noisy_2048_f16:test_rfft_f16
rifft_noisy_4096_f16:test_rfft_f16
rifft_step_32_f16:test_rfft_f16
rifft_step_64_f16:test_rfft_f16
rifft_step_128_f16:test_rfft_f16
rifft_step_256_f16:test_rfft_f16
rifft_step_512_f16:test_rfft_f16
rifft_step_1024_f16:test_rfft_f16
rifft_step_2048_f16:test_rfft_f16
rifft_step_4096_f16:test_rfft_f16
}
}
}
}
}
Loading…
Cancel
Save