diff --git a/.gitignore b/.gitignore index f6edf40f..963be75b 100644 --- a/.gitignore +++ b/.gitignore @@ -11,3 +11,6 @@ Examples/ARM/arm_linear_interp_example/RTE/ Examples/ARM/arm_signal_converge_example/RTE/ Examples/ARM/arm_svm_example/RTE/ Projects/ARM/IntermediateFiles/ +.ipynb_checkpoints +Examples/ARM/*/RTE/ +Examples/ARM/*/MTICoverageOut.cov diff --git a/Examples/ARM/arm_bayes_example/arm_bayes_example_f32.c b/Examples/ARM/arm_bayes_example/arm_bayes_example_f32.c index 64702573..b0cc13a1 100755 --- a/Examples/ARM/arm_bayes_example/arm_bayes_example_f32.c +++ b/Examples/ARM/arm_bayes_example/arm_bayes_example_f32.c @@ -48,7 +48,8 @@ * \par Description: * \par * Demonstrates the use of Bayesian classifier functions. It is complementing the tutorial - * about classical ML with CMSIS-DSP and python scikit-learn. + * about classical ML with CMSIS-DSP and python scikit-learn: + * https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/implement-classical-ml-with-arm-cmsis-dsp-libraries * */ diff --git a/Examples/ARM/arm_svm_example/arm_svm_example_f32.c b/Examples/ARM/arm_svm_example/arm_svm_example_f32.c index ce192501..bcadcbc8 100755 --- a/Examples/ARM/arm_svm_example/arm_svm_example_f32.c +++ b/Examples/ARM/arm_svm_example/arm_svm_example_f32.c @@ -48,7 +48,8 @@ * \par Description: * \par * Demonstrates the use of SVM functions. It is complementing the tutorial - * about classical ML with CMSIS-DSP and python scikit-learn. + * about classical ML with CMSIS-DSP and python scikit-learn: + * https://developer.arm.com/solutions/machine-learning-on-arm/developer-material/how-to-guides/implement-classical-ml-with-arm-cmsis-dsp-libraries * */ diff --git a/PythonWrapper/README.md b/PythonWrapper/README.md index 34beb822..52f23f3c 100644 --- a/PythonWrapper/README.md +++ b/PythonWrapper/README.md @@ -6,6 +6,9 @@ It is a very experimental wrapper with lots of limitations as described in the c But even with those limitations, it can be very useful to test a CMSIS-DSP implemention of an algorithm with all the power of numpy and scipy. +A tutorial is also available but with less details than this README: +https://developer.arm.com/documentation/102463/latest/ + # How to build and install ## Tested configurations