Removed duplicate Doxygen definitions.

pull/34/head
Christophe Favergeon 3 years ago
parent c7c223ef74
commit b665767f3e

@ -996,7 +996,14 @@ EXCLUDE_PATTERNS = */RTE/* \
# Note that the wildcards are matched against the file with absolute path, so to
# exclude all test directories use the pattern */test/*
EXCLUDE_SYMBOLS =
EXCLUDE_SYMBOLS = S \
arm_cfft_sR_f64_* \
arm_cfft_sR_f32_* \
arm_cfft_sR_f16_* \
arm_cfft_sR_q31_* \
arm_cfft_sR_q15_* \
any32x4_t \
any32x2_t
# The EXAMPLE_PATH tag can be used to specify one or more files or directories
# that contain example code fragments that are included (see the \include

@ -604,162 +604,6 @@ extern void arm_radix4_butterfly_f16(
@ingroup groupTransforms
*/
/**
@defgroup ComplexFFT Complex FFT Functions
@par
The Fast Fourier Transform (FFT) is an efficient algorithm for computing the
Discrete Fourier Transform (DFT). The FFT can be orders of magnitude faster
than the DFT, especially for long lengths.
The algorithms described in this section
operate on complex data. A separate set of functions is devoted to handling
of real sequences.
@par
There are separate algorithms for handling floating-point, Q15, and Q31 data
types. The algorithms available for each data type are described next.
@par
The FFT functions operate in-place. That is, the array holding the input data
will also be used to hold the corresponding result. The input data is complex
and contains <code>2*fftLen</code> interleaved values as shown below.
<pre>{real[0], imag[0], real[1], imag[1], ...} </pre>
The FFT result will be contained in the same array and the frequency domain
values will have the same interleaving.
@par Floating-point
The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-8
stages are performed along with a single radix-2 or radix-4 stage, as needed.
The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
a different twiddle factor table.
@par
The function uses the standard FFT definition and output values may grow by a
factor of <code>fftLen</code> when computing the forward transform. The
inverse transform includes a scale of <code>1/fftLen</code> as part of the
calculation and this matches the textbook definition of the inverse FFT.
@par
For the MVE version, the new arm_cfft_init_f32 initialization function is
<b>mandatory</b>. <b>Compilation flags are available to include only the required tables for the
needed FFTs.</b> Other FFT versions can continue to be initialized as
explained below.
@par
For not MVE versions, pre-initialized data structures containing twiddle factors
and bit reversal tables are provided and defined in <code>arm_const_structs.h</code>. Include
this header in your function and then pass one of the constant structures as
an argument to arm_cfft_f32. For example:
@par
<code>arm_cfft_f32(arm_cfft_sR_f32_len64, pSrc, 1, 1)</code>
@par
computes a 64-point inverse complex FFT including bit reversal.
The data structures are treated as constant data and not modified during the
calculation. The same data structure can be reused for multiple transforms
including mixing forward and inverse transforms.
@par
Earlier releases of the library provided separate radix-2 and radix-4
algorithms that operated on floating-point data. These functions are still
provided but are deprecated. The older functions are slower and less general
than the new functions.
@par
An example of initialization of the constants for the arm_cfft_f32 function follows:
@code
const static arm_cfft_instance_f32 *S;
...
switch (length) {
case 16:
S = &arm_cfft_sR_f32_len16;
break;
case 32:
S = &arm_cfft_sR_f32_len32;
break;
case 64:
S = &arm_cfft_sR_f32_len64;
break;
case 128:
S = &arm_cfft_sR_f32_len128;
break;
case 256:
S = &arm_cfft_sR_f32_len256;
break;
case 512:
S = &arm_cfft_sR_f32_len512;
break;
case 1024:
S = &arm_cfft_sR_f32_len1024;
break;
case 2048:
S = &arm_cfft_sR_f32_len2048;
break;
case 4096:
S = &arm_cfft_sR_f32_len4096;
break;
}
@endcode
@par
The new arm_cfft_init_f32 can also be used.
@par Q15 and Q31
The floating-point complex FFT uses a mixed-radix algorithm. Multiple radix-4
stages are performed along with a single radix-2 stage, as needed.
The algorithm supports lengths of [16, 32, 64, ..., 4096] and each length uses
a different twiddle factor table.
@par
The function uses the standard FFT definition and output values may grow by a
factor of <code>fftLen</code> when computing the forward transform. The
inverse transform includes a scale of <code>1/fftLen</code> as part of the
calculation and this matches the textbook definition of the inverse FFT.
@par
Pre-initialized data structures containing twiddle factors and bit reversal
tables are provided and defined in <code>arm_const_structs.h</code>. Include
this header in your function and then pass one of the constant structures as
an argument to arm_cfft_q31. For example:
@par
<code>arm_cfft_q31(arm_cfft_sR_q31_len64, pSrc, 1, 1)</code>
@par
computes a 64-point inverse complex FFT including bit reversal.
The data structures are treated as constant data and not modified during the
calculation. The same data structure can be reused for multiple transforms
including mixing forward and inverse transforms.
@par
Earlier releases of the library provided separate radix-2 and radix-4
algorithms that operated on floating-point data. These functions are still
provided but are deprecated. The older functions are slower and less general
than the new functions.
@par
An example of initialization of the constants for the arm_cfft_q31 function follows:
@code
const static arm_cfft_instance_q31 *S;
...
switch (length) {
case 16:
S = &arm_cfft_sR_q31_len16;
break;
case 32:
S = &arm_cfft_sR_q31_len32;
break;
case 64:
S = &arm_cfft_sR_q31_len64;
break;
case 128:
S = &arm_cfft_sR_q31_len128;
break;
case 256:
S = &arm_cfft_sR_q31_len256;
break;
case 512:
S = &arm_cfft_sR_q31_len512;
break;
case 1024:
S = &arm_cfft_sR_q31_len1024;
break;
case 2048:
S = &arm_cfft_sR_q31_len2048;
break;
case 4096:
S = &arm_cfft_sR_q31_len4096;
break;
}
@endcode
*/
/**
@addtogroup ComplexFFT
@{

@ -657,36 +657,37 @@ extern void arm_bitreversal_32(
@code
const static arm_cfft_instance_f32 *S;
...
switch (length) {
case 16:
S = &arm_cfft_sR_f32_len16;
break;
case 32:
S = &arm_cfft_sR_f32_len32;
break;
case 64:
S = &arm_cfft_sR_f32_len64;
break;
case 128:
S = &arm_cfft_sR_f32_len128;
break;
case 256:
S = &arm_cfft_sR_f32_len256;
break;
case 512:
S = &arm_cfft_sR_f32_len512;
break;
case 1024:
S = &arm_cfft_sR_f32_len1024;
break;
case 2048:
S = &arm_cfft_sR_f32_len2048;
break;
case 4096:
S = &arm_cfft_sR_f32_len4096;
break;
}
switch (length) {
case 16:
S = &arm_cfft_sR_f32_len16;
break;
case 32:
S = &arm_cfft_sR_f32_len32;
break;
case 64:
S = &arm_cfft_sR_f32_len64;
break;
case 128:
S = &arm_cfft_sR_f32_len128;
break;
case 256:
S = &arm_cfft_sR_f32_len256;
break;
case 512:
S = &arm_cfft_sR_f32_len512;
break;
case 1024:
S = &arm_cfft_sR_f32_len1024;
break;
case 2048:
S = &arm_cfft_sR_f32_len2048;
break;
case 4096:
S = &arm_cfft_sR_f32_len4096;
break;
}
@endcode
@par
The new arm_cfft_init_f32 can also be used.
@par Q15 and Q31

@ -40,15 +40,6 @@
*/
/**
@defgroup MFCC MFCC
MFCC Transform
There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
@addtogroup MFCC

@ -44,15 +44,6 @@
*/
/**
@defgroup MFCC MFCC
MFCC Transform
There are separate functions for floating-point, Q15, and Q15 data types.
*/
/**
@addtogroup MFCC

@ -44,15 +44,6 @@
*/
/**
@defgroup MFCC MFCC
MFCC Transform
There are separate functions for floating-point, Q31, and Q31 data types.
*/
/**
@addtogroup MFCC

Loading…
Cancel
Save