CMSIS-DSP: Initial F64 CFFT/RFFT implementation
parent
efcc87d950
commit
ee57bbde54
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,318 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cfft_f64.c
|
||||
* Description: Combined Radix Decimation in Frequency CFFT Double Precision Floating point processing function
|
||||
*
|
||||
* $Date: 29. November 2019
|
||||
* $Revision: V1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
|
||||
extern void arm_radix4_butterfly_f64(
|
||||
float64_t * pSrc,
|
||||
uint16_t fftLen,
|
||||
const float64_t * pCoef,
|
||||
uint16_t twidCoefModifier);
|
||||
|
||||
extern void arm_bitreversal_64(
|
||||
uint64_t * pSrc,
|
||||
const uint16_t bitRevLen,
|
||||
const uint16_t * pBitRevTable);
|
||||
|
||||
/**
|
||||
* @} end of ComplexFFT group
|
||||
*/
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
* Internal helper function used by the FFTs
|
||||
* ---------------------------------------------------------------------- */
|
||||
|
||||
/*
|
||||
* @brief Core function for the Double Precision floating-point CFFT butterfly process.
|
||||
* @param[in, out] *pSrc points to the in-place buffer of F64 data type.
|
||||
* @param[in] fftLen length of the FFT.
|
||||
* @param[in] *pCoef points to the twiddle coefficient buffer.
|
||||
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_radix4_butterfly_f64(
|
||||
float64_t * pSrc,
|
||||
uint16_t fftLen,
|
||||
const float64_t * pCoef,
|
||||
uint16_t twidCoefModifier)
|
||||
{
|
||||
|
||||
float64_t co1, co2, co3, si1, si2, si3;
|
||||
uint32_t ia1, ia2, ia3;
|
||||
uint32_t i0, i1, i2, i3;
|
||||
uint32_t n1, n2, j, k;
|
||||
|
||||
float64_t t1, t2, r1, r2, s1, s2;
|
||||
|
||||
|
||||
/* Initializations for the fft calculation */
|
||||
n2 = fftLen;
|
||||
n1 = n2;
|
||||
for (k = fftLen; k > 1U; k >>= 2U)
|
||||
{
|
||||
/* Initializations for the fft calculation */
|
||||
n1 = n2;
|
||||
n2 >>= 2U;
|
||||
ia1 = 0U;
|
||||
|
||||
/* FFT Calculation */
|
||||
j = 0;
|
||||
do
|
||||
{
|
||||
/* index calculation for the coefficients */
|
||||
ia2 = ia1 + ia1;
|
||||
ia3 = ia2 + ia1;
|
||||
co1 = pCoef[ia1 * 2U];
|
||||
si1 = pCoef[(ia1 * 2U) + 1U];
|
||||
co2 = pCoef[ia2 * 2U];
|
||||
si2 = pCoef[(ia2 * 2U) + 1U];
|
||||
co3 = pCoef[ia3 * 2U];
|
||||
si3 = pCoef[(ia3 * 2U) + 1U];
|
||||
|
||||
/* Twiddle coefficients index modifier */
|
||||
ia1 = ia1 + twidCoefModifier;
|
||||
|
||||
i0 = j;
|
||||
do
|
||||
{
|
||||
/* index calculation for the input as, */
|
||||
/* pSrc[i0 + 0], pSrc[i0 + fftLen/4], pSrc[i0 + fftLen/2], pSrc[i0 + 3fftLen/4] */
|
||||
i1 = i0 + n2;
|
||||
i2 = i1 + n2;
|
||||
i3 = i2 + n2;
|
||||
|
||||
/* xa + xc */
|
||||
r1 = pSrc[(2U * i0)] + pSrc[(2U * i2)];
|
||||
|
||||
/* xa - xc */
|
||||
r2 = pSrc[(2U * i0)] - pSrc[(2U * i2)];
|
||||
|
||||
/* ya + yc */
|
||||
s1 = pSrc[(2U * i0) + 1U] + pSrc[(2U * i2) + 1U];
|
||||
|
||||
/* ya - yc */
|
||||
s2 = pSrc[(2U * i0) + 1U] - pSrc[(2U * i2) + 1U];
|
||||
|
||||
/* xb + xd */
|
||||
t1 = pSrc[2U * i1] + pSrc[2U * i3];
|
||||
|
||||
/* xa' = xa + xb + xc + xd */
|
||||
pSrc[2U * i0] = r1 + t1;
|
||||
|
||||
/* xa + xc -(xb + xd) */
|
||||
r1 = r1 - t1;
|
||||
|
||||
/* yb + yd */
|
||||
t2 = pSrc[(2U * i1) + 1U] + pSrc[(2U * i3) + 1U];
|
||||
|
||||
/* ya' = ya + yb + yc + yd */
|
||||
pSrc[(2U * i0) + 1U] = s1 + t2;
|
||||
|
||||
/* (ya + yc) - (yb + yd) */
|
||||
s1 = s1 - t2;
|
||||
|
||||
/* (yb - yd) */
|
||||
t1 = pSrc[(2U * i1) + 1U] - pSrc[(2U * i3) + 1U];
|
||||
|
||||
/* (xb - xd) */
|
||||
t2 = pSrc[2U * i1] - pSrc[2U * i3];
|
||||
|
||||
/* xc' = (xa-xb+xc-xd)co2 + (ya-yb+yc-yd)(si2) */
|
||||
pSrc[2U * i1] = (r1 * co2) + (s1 * si2);
|
||||
|
||||
/* yc' = (ya-yb+yc-yd)co2 - (xa-xb+xc-xd)(si2) */
|
||||
pSrc[(2U * i1) + 1U] = (s1 * co2) - (r1 * si2);
|
||||
|
||||
/* (xa - xc) + (yb - yd) */
|
||||
r1 = r2 + t1;
|
||||
|
||||
/* (xa - xc) - (yb - yd) */
|
||||
r2 = r2 - t1;
|
||||
|
||||
/* (ya - yc) - (xb - xd) */
|
||||
s1 = s2 - t2;
|
||||
|
||||
/* (ya - yc) + (xb - xd) */
|
||||
s2 = s2 + t2;
|
||||
|
||||
/* xb' = (xa+yb-xc-yd)co1 + (ya-xb-yc+xd)(si1) */
|
||||
pSrc[2U * i2] = (r1 * co1) + (s1 * si1);
|
||||
|
||||
/* yb' = (ya-xb-yc+xd)co1 - (xa+yb-xc-yd)(si1) */
|
||||
pSrc[(2U * i2) + 1U] = (s1 * co1) - (r1 * si1);
|
||||
|
||||
/* xd' = (xa-yb-xc+yd)co3 + (ya+xb-yc-xd)(si3) */
|
||||
pSrc[2U * i3] = (r2 * co3) + (s2 * si3);
|
||||
|
||||
/* yd' = (ya+xb-yc-xd)co3 - (xa-yb-xc+yd)(si3) */
|
||||
pSrc[(2U * i3) + 1U] = (s2 * co3) - (r2 * si3);
|
||||
|
||||
i0 += n1;
|
||||
} while ( i0 < fftLen);
|
||||
j++;
|
||||
} while (j <= (n2 - 1U));
|
||||
twidCoefModifier <<= 2U;
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* @brief Core function for the Double Precision floating-point CFFT butterfly process.
|
||||
* @param[in, out] *pSrc points to the in-place buffer of F64 data type.
|
||||
* @param[in] fftLen length of the FFT.
|
||||
* @param[in] *pCoef points to the twiddle coefficient buffer.
|
||||
* @param[in] twidCoefModifier twiddle coefficient modifier that supports different size FFTs with the same twiddle factor table.
|
||||
* @return none.
|
||||
*/
|
||||
|
||||
void arm_cfft_radix4by2_f64(
|
||||
float64_t * pSrc,
|
||||
uint32_t fftLen,
|
||||
const float64_t * pCoef)
|
||||
{
|
||||
uint32_t i, l;
|
||||
uint32_t n2, ia;
|
||||
float64_t xt, yt, cosVal, sinVal;
|
||||
float64_t p0, p1,p2,p3,a0,a1;
|
||||
|
||||
n2 = fftLen >> 1;
|
||||
ia = 0;
|
||||
for (i = 0; i < n2; i++)
|
||||
{
|
||||
cosVal = pCoef[2*ia];
|
||||
sinVal = pCoef[2*ia + 1];
|
||||
ia++;
|
||||
|
||||
l = i + n2;
|
||||
|
||||
/* Butterfly implementation */
|
||||
a0 = pSrc[2 * i] + pSrc[2 * l];
|
||||
xt = pSrc[2 * i] - pSrc[2 * l];
|
||||
|
||||
yt = pSrc[2 * i + 1] - pSrc[2 * l + 1];
|
||||
a1 = pSrc[2 * l + 1] + pSrc[2 * i + 1];
|
||||
|
||||
p0 = xt * cosVal;
|
||||
p1 = yt * sinVal;
|
||||
p2 = yt * cosVal;
|
||||
p3 = xt * sinVal;
|
||||
|
||||
pSrc[2 * i] = a0;
|
||||
pSrc[2 * i + 1] = a1;
|
||||
|
||||
pSrc[2 * l] = p0 + p1;
|
||||
pSrc[2 * l + 1] = p2 - p3;
|
||||
|
||||
}
|
||||
|
||||
// first col
|
||||
arm_radix4_butterfly_f64( pSrc, n2, (float64_t*)pCoef, 2U);
|
||||
// second col
|
||||
arm_radix4_butterfly_f64( pSrc + fftLen, n2, (float64_t*)pCoef, 2U);
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@addtogroup ComplexFFT
|
||||
@{
|
||||
*/
|
||||
|
||||
/**
|
||||
@brief Processing function for the Double Precision floating-point complex FFT.
|
||||
@param[in] S points to an instance of the Double Precision floating-point CFFT structure
|
||||
@param[in,out] p1 points to the complex data buffer of size <code>2*fftLen</code>. Processing occurs in-place
|
||||
@param[in] ifftFlag flag that selects transform direction
|
||||
- value = 0: forward transform
|
||||
- value = 1: inverse transform
|
||||
@param[in] bitReverseFlag flag that enables / disables bit reversal of output
|
||||
- value = 0: disables bit reversal of output
|
||||
- value = 1: enables bit reversal of output
|
||||
@return none
|
||||
*/
|
||||
|
||||
void arm_cfft_f64(
|
||||
const arm_cfft_instance_f64 * S,
|
||||
float64_t * p1,
|
||||
uint8_t ifftFlag,
|
||||
uint8_t bitReverseFlag)
|
||||
{
|
||||
uint32_t L = S->fftLen, l;
|
||||
float64_t invL, * pSrc;
|
||||
|
||||
if (ifftFlag == 1U)
|
||||
{
|
||||
/* Conjugate input data */
|
||||
pSrc = p1 + 1;
|
||||
for(l=0; l<L; l++)
|
||||
{
|
||||
*pSrc = -*pSrc;
|
||||
pSrc += 2;
|
||||
}
|
||||
}
|
||||
|
||||
switch (L)
|
||||
{
|
||||
case 16:
|
||||
case 64:
|
||||
case 256:
|
||||
case 1024:
|
||||
case 4096:
|
||||
arm_radix4_butterfly_f64 (p1, L, (float64_t*)S->pTwiddle, 1U);
|
||||
break;
|
||||
|
||||
case 32:
|
||||
case 128:
|
||||
case 512:
|
||||
case 2048:
|
||||
arm_cfft_radix4by2_f64 ( p1, L, (float64_t*)S->pTwiddle);
|
||||
break;
|
||||
|
||||
}
|
||||
|
||||
if ( bitReverseFlag )
|
||||
arm_bitreversal_64((uint64_t*)p1, S->bitRevLength,S->pBitRevTable);
|
||||
|
||||
if (ifftFlag == 1U)
|
||||
{
|
||||
invL = 1.0 / (float64_t)L;
|
||||
/* Conjugate and scale output data */
|
||||
pSrc = p1;
|
||||
for(l=0; l<L; l++)
|
||||
{
|
||||
*pSrc++ *= invL ;
|
||||
*pSrc = -(*pSrc) * invL;
|
||||
pSrc++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
@} end of ComplexFFT group
|
||||
*/
|
||||
@ -0,0 +1,228 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_rfft_f64.c
|
||||
* Description: RFFT & RIFFT Double precision Floating point process function
|
||||
*
|
||||
* $Date: 29. November 2019
|
||||
* $Revision: V1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
|
||||
void stage_rfft_f64(
|
||||
const arm_rfft_fast_instance_f64 * S,
|
||||
float64_t * p,
|
||||
float64_t * pOut)
|
||||
{
|
||||
uint32_t k; /* Loop Counter */
|
||||
float64_t twR, twI; /* RFFT Twiddle coefficients */
|
||||
const float64_t * pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
|
||||
float64_t *pA = p; /* increasing pointer */
|
||||
float64_t *pB = p; /* decreasing pointer */
|
||||
float64_t xAR, xAI, xBR, xBI; /* temporary variables */
|
||||
float64_t t1a, t1b; /* temporary variables */
|
||||
float64_t p0, p1, p2, p3; /* temporary variables */
|
||||
|
||||
|
||||
k = (S->Sint).fftLen - 1;
|
||||
|
||||
/* Pack first and last sample of the frequency domain together */
|
||||
|
||||
xBR = pB[0];
|
||||
xBI = pB[1];
|
||||
xAR = pA[0];
|
||||
xAI = pA[1];
|
||||
|
||||
twR = *pCoeff++ ;
|
||||
twI = *pCoeff++ ;
|
||||
|
||||
// U1 = XA(1) + XB(1); % It is real
|
||||
t1a = xBR + xAR ;
|
||||
|
||||
// U2 = XB(1) - XA(1); % It is imaginary
|
||||
t1b = xBI + xAI ;
|
||||
|
||||
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
|
||||
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
|
||||
*pOut++ = 0.5 * ( t1a + t1b );
|
||||
*pOut++ = 0.5 * ( t1a - t1b );
|
||||
|
||||
// XA(1) = 1/2*( U1 - imag(U2) + i*( U1 +imag(U2) ));
|
||||
pB = p + 2*k;
|
||||
pA += 2;
|
||||
|
||||
do
|
||||
{
|
||||
/*
|
||||
function X = my_split_rfft(X, ifftFlag)
|
||||
% X is a series of real numbers
|
||||
L = length(X);
|
||||
XC = X(1:2:end) +i*X(2:2:end);
|
||||
XA = fft(XC);
|
||||
XB = conj(XA([1 end:-1:2]));
|
||||
TW = i*exp(-2*pi*i*[0:L/2-1]/L).';
|
||||
for l = 2:L/2
|
||||
XA(l) = 1/2 * (XA(l) + XB(l) + TW(l) * (XB(l) - XA(l)));
|
||||
end
|
||||
XA(1) = 1/2* (XA(1) + XB(1) + TW(1) * (XB(1) - XA(1))) + i*( 1/2*( XA(1) + XB(1) + i*( XA(1) - XB(1))));
|
||||
X = XA;
|
||||
*/
|
||||
|
||||
xBI = pB[1];
|
||||
xBR = pB[0];
|
||||
xAR = pA[0];
|
||||
xAI = pA[1];
|
||||
|
||||
twR = *pCoeff++;
|
||||
twI = *pCoeff++;
|
||||
|
||||
t1a = xBR - xAR ;
|
||||
t1b = xBI + xAI ;
|
||||
|
||||
// real(tw * (xB - xA)) = twR * (xBR - xAR) - twI * (xBI - xAI);
|
||||
// imag(tw * (xB - xA)) = twI * (xBR - xAR) + twR * (xBI - xAI);
|
||||
p0 = twR * t1a;
|
||||
p1 = twI * t1a;
|
||||
p2 = twR * t1b;
|
||||
p3 = twI * t1b;
|
||||
|
||||
*pOut++ = 0.5 * (xAR + xBR + p0 + p3 ); //xAR
|
||||
*pOut++ = 0.5 * (xAI - xBI + p1 - p2 ); //xAI
|
||||
|
||||
pA += 2;
|
||||
pB -= 2;
|
||||
k--;
|
||||
} while (k > 0U);
|
||||
}
|
||||
|
||||
/* Prepares data for inverse cfft */
|
||||
void merge_rfft_f64(
|
||||
const arm_rfft_fast_instance_f64 * S,
|
||||
float64_t * p,
|
||||
float64_t * pOut)
|
||||
{
|
||||
uint32_t k; /* Loop Counter */
|
||||
float64_t twR, twI; /* RFFT Twiddle coefficients */
|
||||
const float64_t *pCoeff = S->pTwiddleRFFT; /* Points to RFFT Twiddle factors */
|
||||
float64_t *pA = p; /* increasing pointer */
|
||||
float64_t *pB = p; /* decreasing pointer */
|
||||
float64_t xAR, xAI, xBR, xBI; /* temporary variables */
|
||||
float64_t t1a, t1b, r, s, t, u; /* temporary variables */
|
||||
|
||||
k = (S->Sint).fftLen - 1;
|
||||
|
||||
xAR = pA[0];
|
||||
xAI = pA[1];
|
||||
|
||||
pCoeff += 2 ;
|
||||
|
||||
*pOut++ = 0.5 * ( xAR + xAI );
|
||||
*pOut++ = 0.5 * ( xAR - xAI );
|
||||
|
||||
pB = p + 2*k ;
|
||||
pA += 2 ;
|
||||
|
||||
while (k > 0U)
|
||||
{
|
||||
/* G is half of the frequency complex spectrum */
|
||||
//for k = 2:N
|
||||
// Xk(k) = 1/2 * (G(k) + conj(G(N-k+2)) + Tw(k)*( G(k) - conj(G(N-k+2))));
|
||||
xBI = pB[1] ;
|
||||
xBR = pB[0] ;
|
||||
xAR = pA[0];
|
||||
xAI = pA[1];
|
||||
|
||||
twR = *pCoeff++;
|
||||
twI = *pCoeff++;
|
||||
|
||||
t1a = xAR - xBR ;
|
||||
t1b = xAI + xBI ;
|
||||
|
||||
r = twR * t1a;
|
||||
s = twI * t1b;
|
||||
t = twI * t1a;
|
||||
u = twR * t1b;
|
||||
|
||||
// real(tw * (xA - xB)) = twR * (xAR - xBR) - twI * (xAI - xBI);
|
||||
// imag(tw * (xA - xB)) = twI * (xAR - xBR) + twR * (xAI - xBI);
|
||||
*pOut++ = 0.5 * (xAR + xBR - r - s ); //xAR
|
||||
*pOut++ = 0.5 * (xAI - xBI + t - u ); //xAI
|
||||
|
||||
pA += 2;
|
||||
pB -= 2;
|
||||
k--;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@ingroup groupTransforms
|
||||
*/
|
||||
|
||||
|
||||
/**
|
||||
@addtogroup RealFFT
|
||||
@{
|
||||
*/
|
||||
|
||||
/**
|
||||
@brief Processing function for the Double Precision floating-point real FFT.
|
||||
@param[in] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@param[in] p points to input buffer (Source buffer is modified by this function.)
|
||||
@param[in] pOut points to output buffer
|
||||
@param[in] ifftFlag
|
||||
- value = 0: RFFT
|
||||
- value = 1: RIFFT
|
||||
@return none
|
||||
*/
|
||||
|
||||
void arm_rfft_fast_f64(
|
||||
arm_rfft_fast_instance_f64 * S,
|
||||
float64_t * p,
|
||||
float64_t * pOut,
|
||||
uint8_t ifftFlag)
|
||||
{
|
||||
arm_cfft_instance_f64 * Sint = &(S->Sint);
|
||||
Sint->fftLen = S->fftLenRFFT / 2;
|
||||
|
||||
/* Calculation of Real FFT */
|
||||
if (ifftFlag)
|
||||
{
|
||||
/* Real FFT compression */
|
||||
merge_rfft_f64(S, p, pOut);
|
||||
|
||||
/* Complex radix-4 IFFT process */
|
||||
arm_cfft_f64( Sint, pOut, ifftFlag, 1);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* Calculation of RFFT of input */
|
||||
arm_cfft_f64( Sint, p, ifftFlag, 1);
|
||||
|
||||
/* Real FFT extraction */
|
||||
stage_rfft_f64(S, p, pOut);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @} end of RealFFT group
|
||||
*/
|
||||
@ -0,0 +1,344 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
* Project: CMSIS DSP Library
|
||||
* Title: arm_cfft_init_f64.c
|
||||
* Description: Split Radix Decimation in Frequency CFFT Double Precision Floating point processing function
|
||||
*
|
||||
* $Date: 29. November 2019
|
||||
* $Revision: V1.0.0
|
||||
*
|
||||
* Target Processor: Cortex-M cores
|
||||
* -------------------------------------------------------------------- */
|
||||
/*
|
||||
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
|
||||
*
|
||||
* SPDX-License-Identifier: Apache-2.0
|
||||
*
|
||||
* Licensed under the Apache License, Version 2.0 (the License); you may
|
||||
* not use this file except in compliance with the License.
|
||||
* You may obtain a copy of the License at
|
||||
*
|
||||
* www.apache.org/licenses/LICENSE-2.0
|
||||
*
|
||||
* Unless required by applicable law or agreed to in writing, software
|
||||
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
||||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
* See the License for the specific language governing permissions and
|
||||
* limitations under the License.
|
||||
*/
|
||||
|
||||
#include "arm_math.h"
|
||||
#include "arm_common_tables.h"
|
||||
|
||||
/**
|
||||
@ingroup groupTransforms
|
||||
*/
|
||||
|
||||
/**
|
||||
@addtogroup RealFFT
|
||||
@{
|
||||
*/
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_16) && defined(ARM_TABLE_BITREVIDX_FLT64_16) && defined(ARM_TABLE_TWIDDLECOEF_F64_16) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_32))
|
||||
|
||||
/**
|
||||
@brief Initialization function for the 32pt double precision floating-point real FFT.
|
||||
@param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
|
||||
*/
|
||||
|
||||
arm_status arm_rfft_32_fast_init_f64( arm_rfft_fast_instance_f64 * S ) {
|
||||
|
||||
arm_cfft_instance_f64 * Sint;
|
||||
|
||||
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
|
||||
Sint = &(S->Sint);
|
||||
Sint->fftLen = 16U;
|
||||
S->fftLenRFFT = 32U;
|
||||
|
||||
Sint->bitRevLength = ARMBITREVINDEXTABLEF64_16_TABLE_LENGTH;
|
||||
Sint->pBitRevTable = (uint16_t *)armBitRevIndexTableF64_16;
|
||||
Sint->pTwiddle = (float64_t *) twiddleCoefF64_16;
|
||||
S->pTwiddleRFFT = (float64_t *) twiddleCoefF64_rfft_32;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_32) && defined(ARM_TABLE_BITREVIDX_FLT64_32) && defined(ARM_TABLE_TWIDDLECOEF_F64_32) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_64))
|
||||
|
||||
/**
|
||||
@brief Initialization function for the 64pt Double Precision floating-point real FFT.
|
||||
@param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
|
||||
*/
|
||||
|
||||
arm_status arm_rfft_64_fast_init_f64( arm_rfft_fast_instance_f64 * S ) {
|
||||
|
||||
arm_cfft_instance_f64 * Sint;
|
||||
|
||||
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
|
||||
Sint = &(S->Sint);
|
||||
Sint->fftLen = 32U;
|
||||
S->fftLenRFFT = 64U;
|
||||
|
||||
Sint->bitRevLength = ARMBITREVINDEXTABLEF64_32_TABLE_LENGTH;
|
||||
Sint->pBitRevTable = (uint16_t *)armBitRevIndexTableF64_32;
|
||||
Sint->pTwiddle = (float64_t *) twiddleCoefF64_32;
|
||||
S->pTwiddleRFFT = (float64_t *) twiddleCoefF64_rfft_64;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_64) && defined(ARM_TABLE_BITREVIDX_FLT64_64) && defined(ARM_TABLE_TWIDDLECOEF_F64_64) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_128))
|
||||
|
||||
/**
|
||||
@brief Initialization function for the 128pt Double Precision floating-point real FFT.
|
||||
@param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
|
||||
*/
|
||||
|
||||
arm_status arm_rfft_128_fast_init_f64( arm_rfft_fast_instance_f64 * S ) {
|
||||
|
||||
arm_cfft_instance_f64 * Sint;
|
||||
|
||||
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
|
||||
Sint = &(S->Sint);
|
||||
Sint->fftLen = 64U;
|
||||
S->fftLenRFFT = 128U;
|
||||
|
||||
Sint->bitRevLength = ARMBITREVINDEXTABLEF64_64_TABLE_LENGTH;
|
||||
Sint->pBitRevTable = (uint16_t *)armBitRevIndexTableF64_64;
|
||||
Sint->pTwiddle = (float64_t *) twiddleCoefF64_64;
|
||||
S->pTwiddleRFFT = (float64_t *) twiddleCoefF64_rfft_128;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_128) && defined(ARM_TABLE_BITREVIDX_FLT64_128) && defined(ARM_TABLE_TWIDDLECOEF_F64_128) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_256))
|
||||
|
||||
/**
|
||||
@brief Initialization function for the 256pt Double Precision floating-point real FFT.
|
||||
@param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
|
||||
*/
|
||||
|
||||
arm_status arm_rfft_256_fast_init_f64( arm_rfft_fast_instance_f64 * S ) {
|
||||
|
||||
arm_cfft_instance_f64 * Sint;
|
||||
|
||||
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
|
||||
Sint = &(S->Sint);
|
||||
Sint->fftLen = 128U;
|
||||
S->fftLenRFFT = 256U;
|
||||
|
||||
Sint->bitRevLength = ARMBITREVINDEXTABLEF64_128_TABLE_LENGTH;
|
||||
Sint->pBitRevTable = (uint16_t *)armBitRevIndexTableF64_128;
|
||||
Sint->pTwiddle = (float64_t *) twiddleCoefF64_128;
|
||||
S->pTwiddleRFFT = (float64_t *) twiddleCoefF64_rfft_256;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_256) && defined(ARM_TABLE_BITREVIDX_FLT64_256) && defined(ARM_TABLE_TWIDDLECOEF_F64_256) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_512))
|
||||
|
||||
/**
|
||||
@brief Initialization function for the 512pt Double Precision floating-point real FFT.
|
||||
@param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
|
||||
*/
|
||||
|
||||
arm_status arm_rfft_512_fast_init_f64( arm_rfft_fast_instance_f64 * S ) {
|
||||
|
||||
arm_cfft_instance_f64 * Sint;
|
||||
|
||||
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
|
||||
Sint = &(S->Sint);
|
||||
Sint->fftLen = 256U;
|
||||
S->fftLenRFFT = 512U;
|
||||
|
||||
Sint->bitRevLength = ARMBITREVINDEXTABLEF64_256_TABLE_LENGTH;
|
||||
Sint->pBitRevTable = (uint16_t *)armBitRevIndexTableF64_256;
|
||||
Sint->pTwiddle = (float64_t *) twiddleCoefF64_256;
|
||||
S->pTwiddleRFFT = (float64_t *) twiddleCoefF64_rfft_512;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_512) && defined(ARM_TABLE_BITREVIDX_FLT64_512) && defined(ARM_TABLE_TWIDDLECOEF_F64_512) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_1024))
|
||||
/**
|
||||
@brief Initialization function for the 1024pt Double Precision floating-point real FFT.
|
||||
@param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
|
||||
*/
|
||||
|
||||
arm_status arm_rfft_1024_fast_init_f64( arm_rfft_fast_instance_f64 * S ) {
|
||||
|
||||
arm_cfft_instance_f64 * Sint;
|
||||
|
||||
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
|
||||
Sint = &(S->Sint);
|
||||
Sint->fftLen = 512U;
|
||||
S->fftLenRFFT = 1024U;
|
||||
|
||||
Sint->bitRevLength = ARMBITREVINDEXTABLEF64_512_TABLE_LENGTH;
|
||||
Sint->pBitRevTable = (uint16_t *)armBitRevIndexTableF64_512;
|
||||
Sint->pTwiddle = (float64_t *) twiddleCoefF64_512;
|
||||
S->pTwiddleRFFT = (float64_t *) twiddleCoefF64_rfft_1024;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_1024) && defined(ARM_TABLE_BITREVIDX_FLT64_1024) && defined(ARM_TABLE_TWIDDLECOEF_F64_1024) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_2048))
|
||||
/**
|
||||
@brief Initialization function for the 2048pt Double Precision floating-point real FFT.
|
||||
@param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
|
||||
*/
|
||||
arm_status arm_rfft_2048_fast_init_f64( arm_rfft_fast_instance_f64 * S ) {
|
||||
|
||||
arm_cfft_instance_f64 * Sint;
|
||||
|
||||
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
|
||||
Sint = &(S->Sint);
|
||||
Sint->fftLen = 1024U;
|
||||
S->fftLenRFFT = 2048U;
|
||||
|
||||
Sint->bitRevLength = ARMBITREVINDEXTABLEF64_1024_TABLE_LENGTH;
|
||||
Sint->pBitRevTable = (uint16_t *)armBitRevIndexTableF64_1024;
|
||||
Sint->pTwiddle = (float64_t *) twiddleCoefF64_1024;
|
||||
S->pTwiddleRFFT = (float64_t *) twiddleCoefF64_rfft_2048;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_2048) && defined(ARM_TABLE_BITREVIDX_FLT64_2048) && defined(ARM_TABLE_TWIDDLECOEF_F64_2048) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_4096))
|
||||
/**
|
||||
* @brief Initialization function for the 4096pt Double Precision floating-point real FFT.
|
||||
* @param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : an error is detected
|
||||
*/
|
||||
|
||||
arm_status arm_rfft_4096_fast_init_f64( arm_rfft_fast_instance_f64 * S ) {
|
||||
|
||||
arm_cfft_instance_f64 * Sint;
|
||||
|
||||
if( !S ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
|
||||
Sint = &(S->Sint);
|
||||
Sint->fftLen = 2048U;
|
||||
S->fftLenRFFT = 4096U;
|
||||
|
||||
Sint->bitRevLength = ARMBITREVINDEXTABLEF64_2048_TABLE_LENGTH;
|
||||
Sint->pBitRevTable = (uint16_t *)armBitRevIndexTableF64_2048;
|
||||
Sint->pTwiddle = (float64_t *) twiddleCoefF64_2048;
|
||||
S->pTwiddleRFFT = (float64_t *) twiddleCoefF64_rfft_4096;
|
||||
|
||||
return ARM_MATH_SUCCESS;
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
@brief Initialization function for the Double Precision floating-point real FFT.
|
||||
@param[in,out] S points to an arm_rfft_fast_instance_f64 structure
|
||||
@param[in] fftLen length of the Real Sequence
|
||||
@return execution status
|
||||
- \ref ARM_MATH_SUCCESS : Operation successful
|
||||
- \ref ARM_MATH_ARGUMENT_ERROR : <code>fftLen</code> is not a supported length
|
||||
|
||||
@par Description
|
||||
The parameter <code>fftLen</code> specifies the length of RFFT/CIFFT process.
|
||||
Supported FFT Lengths are 32, 64, 128, 256, 512, 1024, 2048, 4096.
|
||||
@par
|
||||
This Function also initializes Twiddle factor table pointer and Bit reversal table pointer.
|
||||
*/
|
||||
|
||||
arm_status arm_rfft_fast_init_f64(
|
||||
arm_rfft_fast_instance_f64 * S,
|
||||
uint16_t fftLen)
|
||||
{
|
||||
typedef arm_status(*fft_init_ptr)( arm_rfft_fast_instance_f64 *);
|
||||
fft_init_ptr fptr = 0x0;
|
||||
|
||||
switch (fftLen)
|
||||
{
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_2048) && defined(ARM_TABLE_BITREVIDX_FLT64_2048) && defined(ARM_TABLE_TWIDDLECOEF_F64_2048) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_4096))
|
||||
case 4096U:
|
||||
fptr = arm_rfft_4096_fast_init_f64;
|
||||
break;
|
||||
#endif
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_1024) && defined(ARM_TABLE_BITREVIDX_FLT64_1024) && defined(ARM_TABLE_TWIDDLECOEF_F64_1024) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_2048))
|
||||
case 2048U:
|
||||
fptr = arm_rfft_2048_fast_init_f64;
|
||||
break;
|
||||
#endif
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_512) && defined(ARM_TABLE_BITREVIDX_FLT64_512) && defined(ARM_TABLE_TWIDDLECOEF_F64_512) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_1024))
|
||||
case 1024U:
|
||||
fptr = arm_rfft_1024_fast_init_f64;
|
||||
break;
|
||||
#endif
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_256) && defined(ARM_TABLE_BITREVIDX_FLT64_256) && defined(ARM_TABLE_TWIDDLECOEF_F64_256) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_512))
|
||||
case 512U:
|
||||
fptr = arm_rfft_512_fast_init_f64;
|
||||
break;
|
||||
#endif
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_128) && defined(ARM_TABLE_BITREVIDX_FLT64_128) && defined(ARM_TABLE_TWIDDLECOEF_F64_128) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_256))
|
||||
case 256U:
|
||||
fptr = arm_rfft_256_fast_init_f64;
|
||||
break;
|
||||
#endif
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_64) && defined(ARM_TABLE_BITREVIDX_FLT64_64) && defined(ARM_TABLE_TWIDDLECOEF_F64_64) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_128))
|
||||
case 128U:
|
||||
fptr = arm_rfft_128_fast_init_f64;
|
||||
break;
|
||||
#endif
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_32) && defined(ARM_TABLE_BITREVIDX_FLT64_32) && defined(ARM_TABLE_TWIDDLECOEF_F64_32) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_64))
|
||||
case 64U:
|
||||
fptr = arm_rfft_64_fast_init_f64;
|
||||
break;
|
||||
#endif
|
||||
#if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FFT_TABLES) || (defined(ARM_TABLE_TWIDDLECOEF_F64_16) && defined(ARM_TABLE_BITREVIDX_FLT64_16) && defined(ARM_TABLE_TWIDDLECOEF_F64_16) && defined(ARM_TABLE_TWIDDLECOEF_RFFT_F64_32))
|
||||
case 32U:
|
||||
fptr = arm_rfft_32_fast_init_f64;
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
return ARM_MATH_ARGUMENT_ERROR;
|
||||
}
|
||||
|
||||
if( ! fptr ) return ARM_MATH_ARGUMENT_ERROR;
|
||||
return fptr( S );
|
||||
|
||||
}
|
||||
|
||||
/**
|
||||
@} end of RealFFT group
|
||||
*/
|
||||
Loading…
Reference in New Issue