import cmsisdsp as dsp import cmsisdsp.fixedpoint as f import numpy as np from scipy import signal import matplotlib.pyplot as plt import scipy.fft import colorama from colorama import init,Fore, Back, Style from numpy.testing import assert_allclose init() def printTitle(s): print("\n" + Fore.GREEN + Style.BRIGHT + s + Style.RESET_ALL) def printSubTitle(s): print("\n" + Style.BRIGHT + s + Style.RESET_ALL) def chop(A, eps = 1e-6): B = np.copy(A) B[np.abs(A) < eps] = 0 return B nb = 32 signal = np.cos(2 * np.pi * np.arange(nb) / nb)*np.cos(0.2*2 * np.pi * np.arange(nb) / nb) ref=scipy.fft.rfft(signal) invref = scipy.fft.irfft(ref) # Convert ref to CMSIS-DSP format referenceFloat=np.zeros(nb) # Replace complex datatype by real datatype referenceFloat[0::2] = np.real(ref)[:-1] referenceFloat[1::2] = np.imag(ref)[:-1] # Copy Nyquist frequency value into first # sample.This is just a storage trick so that the # output of the RFFT has same length as input # It is legacy behavior that we need to keep # for backward compatibility but it is not # very pretty referenceFloat[1] = np.real(ref[-1]) printTitle("RFFT FAST F64") printSubTitle("RFFT") rfftf64=dsp.arm_rfft_fast_instance_f64() status=dsp.arm_rfft_fast_init_f64(rfftf64,nb) result = dsp.arm_rfft_fast_f64(rfftf64,signal,0) assert_allclose(referenceFloat,result) printSubTitle("RIFFT") rifftf64=dsp.arm_rfft_fast_instance_f64() status=dsp.arm_rfft_fast_init_f64(rifftf64,nb) result = dsp.arm_rfft_fast_f64(rifftf64,referenceFloat,1) assert_allclose(invref,result,atol=1e-15) printTitle("RFFT FAST F32") printSubTitle("RFFT") rfftf32=dsp.arm_rfft_fast_instance_f32() status=dsp.arm_rfft_fast_init_f32(rfftf32,nb) result = dsp.arm_rfft_fast_f32(rfftf32,signal,0) assert_allclose(referenceFloat,result,rtol=3e-6) printSubTitle("RIFFT") rifftf32=dsp.arm_rfft_fast_instance_f32() status=dsp.arm_rfft_fast_init_f32(rifftf32,nb) result = dsp.arm_rfft_fast_f32(rifftf32,referenceFloat,1) assert_allclose(invref,result,atol=1e-7) # Fixed point # Reference from fixed point arithmetric. # The RFFT are not packing the Nyquist frequency # real value in sample 0 referenceFloat=np.zeros(nb+2) # Replace complex datatype by real datatype referenceFloat[0::2] = np.real(ref) referenceFloat[1::2] = np.imag(ref) printTitle("RFFT Q31") printSubTitle("RFFT") signalQ31 = f.toQ31(signal) rfftQ31=dsp.arm_rfft_instance_q31() status=dsp.arm_rfft_init_q31(rfftQ31,nb,0,1) resultQ31 = dsp.arm_rfft_q31(rfftQ31,signalQ31) # Drop the conjugate part which is not computed by scipy resultQ31 = resultQ31[:nb+2] resultF = f.Q31toF32(resultQ31) * nb assert_allclose(referenceFloat,resultF,rtol=1e-6,atol=1e-6) printSubTitle("RIFFT") rifftQ31=dsp.arm_rfft_instance_q31() status=dsp.arm_rfft_init_q31(rifftQ31,nb,1,1) # Apply CMSIS-DSP scaling referenceQ31 = f.toQ31(referenceFloat / nb) resultQ31 = dsp.arm_rfft_q31(rifftQ31,referenceFloat) resultF = f.Q31toF32(resultQ31) assert_allclose(invref,result,atol=1e-6) printTitle("RFFT Q15") printSubTitle("RFFT") signalQ15 = f.toQ15(signal) rfftQ15=dsp.arm_rfft_instance_q15() status=dsp.arm_rfft_init_q15(rfftQ15,nb,0,1) resultQ15 = dsp.arm_rfft_q15(rfftQ15,signalQ15) # Drop the conjugate part which is not computed by scipy resultQ15 = resultQ15[:nb+2] resultF = f.Q15toF32(resultQ15) * nb assert_allclose(referenceFloat,resultF,rtol=1e-6,atol=1e-2) printSubTitle("RIFFT") rifftQ15=dsp.arm_rfft_instance_q15() status=dsp.arm_rfft_init_q15(rifftQ15,nb,1,1) # Apply CMSIS-DSP scaling referenceQ15 = f.toQ15(referenceFloat / nb) resultQ15 = dsp.arm_rfft_q15(rifftQ15,referenceFloat) resultF = f.Q15toF32(resultQ15) assert_allclose(invref,result,atol=1e-2)