import numpy as np import cmsisdsp.datatype as dt def frequencyToMelSpace(freq): return 1127.0 * np.log(1.0 + freq / 700.0) def melSpaceToFrequency(mels): return 700.0 * (np.exp(mels / 1127.0) - 1.0) def melFilterMatrix(dtype,fmin, fmax, numOfMelFilters,fs,FFTSize): filters = np.zeros((numOfMelFilters,int(FFTSize/2+1))) zeros = np.zeros(int(FFTSize // 2 )) fmin_mel = frequencyToMelSpace(fmin) fmax_mel = frequencyToMelSpace(fmax) mels = np.linspace(fmin_mel, fmax_mel, num=numOfMelFilters+2) linearfreqs = np.linspace( 0, fs/2.0, int(FFTSize // 2 + 1) ) spectrogrammels = frequencyToMelSpace(linearfreqs)[1:] filtPos=[] filtLen=[] totalLen = 0 packedFilters = [] for n in range(numOfMelFilters): upper = (spectrogrammels - mels[n])/(mels[n+1]-mels[n]) lower = (mels[n+2] - spectrogrammels)/(mels[n+2]-mels[n+1]) filters[n, :] = np.hstack([0,np.maximum(zeros,np.minimum(upper,lower))]) nb = 0 startFound = False for sample in filters[n, :]: if not startFound and sample != 0.0: startFound = True startPos = nb if startFound and sample == 0.0: endPos = nb - 1 break nb = nb + 1 filtLen.append(endPos - startPos+1) totalLen += endPos - startPos + 1 filtPos.append(startPos) packedFilters += list(filters[n, startPos:endPos+1]) return filtLen,filtPos,dt.convert(packedFilters,dtype) def dctMatrix(dtype,numOfDctOutputs, numOfMelFilters): result = np.zeros((numOfDctOutputs,numOfMelFilters)) s=(np.linspace(1,numOfMelFilters,numOfMelFilters) - 0.5)/numOfMelFilters for i in range(0, numOfDctOutputs): result[i,:]=np.cos(i * np.pi*s) * np.sqrt(2.0/numOfMelFilters) return dt.convert(result.reshape(numOfDctOutputs*numOfMelFilters),dtype)