/* ---------------------------------------------------------------------- * Copyright (C) 2010-2014 ARM Limited. All rights reserved. * * $Date: 19. March 2015 * $Revision: V.1.4.5 * * Project: CMSIS DSP Library * Title: arm_mat_mult_fast_q31.c * * Description: Q31 matrix multiplication (fast variant). * * Target Processor: Cortex-M4/Cortex-M3 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * -------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupMatrix */ /** * @addtogroup MatrixMult * @{ */ /** * @brief Q31 matrix multiplication (fast variant) for Cortex-M3 and Cortex-M4 * @param[in] *pSrcA points to the first input matrix structure * @param[in] *pSrcB points to the second input matrix structure * @param[out] *pDst points to output matrix structure * @return The function returns either * ARM_MATH_SIZE_MISMATCH or ARM_MATH_SUCCESS based on the outcome of size checking. * * @details * Scaling and Overflow Behavior: * * \par * The difference between the function arm_mat_mult_q31() and this fast variant is that * the fast variant use a 32-bit rather than a 64-bit accumulator. * The result of each 1.31 x 1.31 multiplication is truncated to * 2.30 format. These intermediate results are accumulated in a 32-bit register in 2.30 * format. Finally, the accumulator is saturated and converted to a 1.31 result. * * \par * The fast version has the same overflow behavior as the standard version but provides * less precision since it discards the low 32 bits of each multiplication result. * In order to avoid overflows completely the input signals must be scaled down. * Scale down one of the input matrices by log2(numColsA) bits to * avoid overflows, as a total of numColsA additions are computed internally for each * output element. * * \par * See arm_mat_mult_q31() for a slower implementation of this function * which uses 64-bit accumulation to provide higher precision. */ arm_status arm_mat_mult_fast_q31( const arm_matrix_instance_q31 * pSrcA, const arm_matrix_instance_q31 * pSrcB, arm_matrix_instance_q31 * pDst) { q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */ q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */ q31_t *px; /* Temporary output data matrix pointer */ q31_t sum; /* Accumulator */ uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */ uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */ uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */ uint32_t col, i = 0u, j, row = numRowsA, colCnt; /* loop counters */ arm_status status; /* status of matrix multiplication */ q31_t inA1, inB1; #ifndef ARM_MATH_CM0_FAMILY q31_t sum2, sum3, sum4; q31_t inA2, inB2; q31_t *pInA2; q31_t *px2; #endif #ifdef ARM_MATH_MATRIX_CHECK /* Check for matrix mismatch condition */ if((pSrcA->numCols != pSrcB->numRows) || (pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) { /* Set status as ARM_MATH_SIZE_MISMATCH */ status = ARM_MATH_SIZE_MISMATCH; } else #endif /* #ifdef ARM_MATH_MATRIX_CHECK */ { px = pDst->pData; #ifndef ARM_MATH_CM0_FAMILY row = row >> 1; px2 = px + numColsB; #endif /* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */ /* row loop */ while(row > 0u) { /* For every row wise process, the column loop counter is to be initiated */ col = numColsB; /* For every row wise process, the pIn2 pointer is set ** to the starting address of the pSrcB data */ pInB = pSrcB->pData; j = 0u; #ifndef ARM_MATH_CM0_FAMILY col = col >> 1; #endif /* column loop */ while (col > 0u) { /* Set the variable sum, that acts as accumulator, to zero */ sum = 0; /* Initiate data pointers */ pInA = pSrcA->pData + i; pInB = pSrcB->pData + j; #ifndef ARM_MATH_CM0_FAMILY sum2 = 0; sum3 = 0; sum4 = 0; pInA2 = pInA + numColsA; colCnt = numColsA; #else colCnt = numColsA >> 2; #endif /* matrix multiplication */ while(colCnt > 0u) { #ifndef ARM_MATH_CM0_FAMILY inA1 = *pInA++; inB1 = pInB[0]; inA2 = *pInA2++; inB2 = pInB[1]; pInB += numColsB; sum = __SMMLA(inA1, inB1, sum); sum2 = __SMMLA(inA1, inB2, sum2); sum3 = __SMMLA(inA2, inB1, sum3); sum4 = __SMMLA(inA2, inB2, sum4); #else /* c(m,n) = a(1,1)*b(1,1) + a(1,2) * b(2,1) + .... + a(m,p)*b(p,n) */ /* Perform the multiply-accumulates */ inB1 = *pInB; pInB += numColsB; inA1 = pInA[0]; sum = __SMMLA(inA1, inB1, sum); inB1 = *pInB; pInB += numColsB; inA1 = pInA[1]; sum = __SMMLA(inA1, inB1, sum); inB1 = *pInB; pInB += numColsB; inA1 = pInA[2]; sum = __SMMLA(inA1, inB1, sum); inB1 = *pInB; pInB += numColsB; inA1 = pInA[3]; sum = __SMMLA(inA1, inB1, sum); pInA += 4u; #endif /* Decrement the loop counter */ colCnt--; } #ifdef ARM_MATH_CM0_FAMILY /* If the columns of pSrcA is not a multiple of 4, compute any remaining output samples here. */ colCnt = numColsA % 0x4u; while(colCnt > 0u) { sum = __SMMLA(*pInA++, *pInB, sum); pInB += numColsB; colCnt--; } j++; #endif /* Convert the result from 2.30 to 1.31 format and store in destination buffer */ *px++ = sum << 1; #ifndef ARM_MATH_CM0_FAMILY *px++ = sum2 << 1; *px2++ = sum3 << 1; *px2++ = sum4 << 1; j += 2; #endif /* Decrement the column loop counter */ col--; } i = i + numColsA; #ifndef ARM_MATH_CM0_FAMILY i = i + numColsA; px = px2 + (numColsB & 1u); px2 = px + numColsB; #endif /* Decrement the row loop counter */ row--; } /* Compute any remaining odd row/column below */ #ifndef ARM_MATH_CM0_FAMILY /* Compute remaining output column */ if (numColsB & 1u) { /* Avoid redundant computation of last element */ row = numRowsA & (~0x1); /* Point to remaining unfilled column in output matrix */ px = pDst->pData+numColsB-1; pInA = pSrcA->pData; /* row loop */ while (row > 0) { /* point to last column in matrix B */ pInB = pSrcB->pData + numColsB-1; /* Set the variable sum, that acts as accumulator, to zero */ sum = 0; /* Compute 4 columns at once */ colCnt = numColsA >> 2; /* matrix multiplication */ while(colCnt > 0u) { inA1 = *pInA++; inA2 = *pInA++; inB1 = *pInB; pInB += numColsB; inB2 = *pInB; pInB += numColsB; sum = __SMMLA(inA1, inB1, sum); sum = __SMMLA(inA2, inB2, sum); inA1 = *pInA++; inA2 = *pInA++; inB1 = *pInB; pInB += numColsB; inB2 = *pInB; pInB += numColsB; sum = __SMMLA(inA1, inB1, sum); sum = __SMMLA(inA2, inB2, sum); /* Decrement the loop counter */ colCnt--; } colCnt = numColsA & 3u; while(colCnt > 0u) { sum = __SMMLA(*pInA++, *pInB, sum); pInB += numColsB; colCnt--; } /* Convert the result from 2.30 to 1.31 format and store in destination buffer */ *px = sum << 1; px += numColsB; /* Decrement the row loop counter */ row--; } } /* Compute remaining output row */ if (numRowsA & 1u) { /* point to last row in output matrix */ px = pDst->pData+(numColsB)*(numRowsA-1); col = numColsB; i = 0u; /* col loop */ while (col > 0) { /* point to last row in matrix A */ pInA = pSrcA->pData + (numRowsA-1)*numColsA; pInB = pSrcB->pData + i; /* Set the variable sum, that acts as accumulator, to zero */ sum = 0; /* Compute 4 columns at once */ colCnt = numColsA >> 2; /* matrix multiplication */ while(colCnt > 0u) { inA1 = *pInA++; inA2 = *pInA++; inB1 = *pInB; pInB += numColsB; inB2 = *pInB; pInB += numColsB; sum = __SMMLA(inA1, inB1, sum); sum = __SMMLA(inA2, inB2, sum); inA1 = *pInA++; inA2 = *pInA++; inB1 = *pInB; pInB += numColsB; inB2 = *pInB; pInB += numColsB; sum = __SMMLA(inA1, inB1, sum); sum = __SMMLA(inA2, inB2, sum); /* Decrement the loop counter */ colCnt--; } colCnt = numColsA & 3u; while(colCnt > 0u) { sum = __SMMLA(*pInA++, *pInB, sum); pInB += numColsB; colCnt--; } /* Saturate and store the result in the destination buffer */ *px++ = sum << 1; i++; /* Decrement the col loop counter */ col--; } } #endif /* #ifndef ARM_MATH_CM0_FAMILY */ /* set status as ARM_MATH_SUCCESS */ status = ARM_MATH_SUCCESS; } /* Return to application */ return (status); } /** * @} end of MatrixMult group */