/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_helium_utils.h * Description: Utility functions for Helium development * * $Date: 09. September 2019 * $Revision: V.1.5.1 * * Target Processor: Cortex-M cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef _ARM_UTILS_HELIUM_H_ #define _ARM_UTILS_HELIUM_H_ /*************************************** Definitions available for MVEF and MVEI ***************************************/ #if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) #endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) || defined(ARM_MATH_MVEI) */ /*************************************** Definitions available for MVEF only ***************************************/ #if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) __STATIC_FORCEINLINE float32_t vecAddAcrossF32Mve(float32x4_t in) { float32_t acc; acc = vgetq_lane(in, 0) + vgetq_lane(in, 1) + vgetq_lane(in, 2) + vgetq_lane(in, 3); return acc; } /* newton initial guess */ #define INVSQRT_MAGIC_F32 0x5f3759df #define INVSQRT_NEWTON_MVE_F32(invSqrt, xHalf, xStart)\ { \ float32x4_t tmp; \ \ /* tmp = xhalf * x * x */ \ tmp = vmulq(xStart, xStart); \ tmp = vmulq(tmp, xHalf); \ /* (1.5f - xhalf * x * x) */ \ tmp = vsubq(vdupq_n_f32(1.5f), tmp); \ /* x = x*(1.5f-xhalf*x*x); */ \ invSqrt = vmulq(tmp, xStart); \ } #endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEF) */ /*************************************** Definitions available for MVEI only ***************************************/ #if defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) #include "arm_common_tables.h" #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q31_MVE) __STATIC_INLINE q31x4_t FAST_VSQRT_Q31(q31x4_t vecIn) { q63x2_t vecTmpLL; q31x4_t vecTmp0, vecTmp1; q31_t scale; q63_t tmp64; q31x4_t vecNrm, vecDst, vecIdx, vecSignBits; vecSignBits = vclsq(vecIn); vecSignBits = vbicq(vecSignBits, 1); /* * in = in << no_of_sign_bits; */ vecNrm = vshlq(vecIn, vecSignBits); /* * index = in >> 24; */ vecIdx = vecNrm >> 24; vecIdx = vecIdx << 1; vecTmp0 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, vecIdx); vecIdx = vecIdx + 1; vecTmp1 = vldrwq_gather_shifted_offset_s32(sqrtTable_Q31, vecIdx); vecTmp1 = vqrdmulhq(vecTmp1, vecNrm); vecTmp0 = vecTmp0 - vecTmp1; vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0); vecTmp1 = vqrdmulhq(vecNrm, vecTmp1); vecTmp1 = vdupq_n_s32(0x18000000) - vecTmp1; vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1); vecTmpLL = vmullbq_int(vecNrm, vecTmp0); /* * scale elements 0, 2 */ scale = 26 + (vecSignBits[0] >> 1); tmp64 = asrl(vecTmpLL[0], scale); vecDst[0] = (q31_t) tmp64; scale = 26 + (vecSignBits[2] >> 1); tmp64 = asrl(vecTmpLL[1], scale); vecDst[2] = (q31_t) tmp64; vecTmpLL = vmulltq_int(vecNrm, vecTmp0); /* * scale elements 1, 3 */ scale = 26 + (vecSignBits[1] >> 1); tmp64 = asrl(vecTmpLL[0], scale); vecDst[1] = (q31_t) tmp64; scale = 26 + (vecSignBits[3] >> 1); tmp64 = asrl(vecTmpLL[1], scale); vecDst[3] = (q31_t) tmp64; /* * set negative values to 0 */ vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s32(vecIn, 0)); return vecDst; } #endif #if !defined(ARM_DSP_CONFIG_TABLES) || defined(ARM_ALL_FAST_TABLES) || defined(ARM_TABLE_FAST_SQRT_Q15_MVE) __STATIC_INLINE q15x8_t FAST_VSQRT_Q15(q15x8_t vecIn) { q31x4_t vecTmpLev, vecTmpLodd, vecSignL; q15x8_t vecTmp0, vecTmp1; q15x8_t vecNrm, vecDst, vecIdx, vecSignBits; vecDst = vuninitializedq_s16(); vecSignBits = vclsq(vecIn); vecSignBits = vbicq(vecSignBits, 1); /* * in = in << no_of_sign_bits; */ vecNrm = vshlq(vecIn, vecSignBits); vecIdx = vecNrm >> 8; vecIdx = vecIdx << 1; vecTmp0 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, vecIdx); vecIdx = vecIdx + 1; vecTmp1 = vldrhq_gather_shifted_offset_s16(sqrtTable_Q15, vecIdx); vecTmp1 = vqrdmulhq(vecTmp1, vecNrm); vecTmp0 = vecTmp0 - vecTmp1; vecTmp1 = vqrdmulhq(vecTmp0, vecTmp0); vecTmp1 = vqrdmulhq(vecNrm, vecTmp1); vecTmp1 = vdupq_n_s16(0x1800) - vecTmp1; vecTmp0 = vqrdmulhq(vecTmp0, vecTmp1); vecSignBits = vecSignBits >> 1; vecTmpLev = vmullbq_int(vecNrm, vecTmp0); vecTmpLodd = vmulltq_int(vecNrm, vecTmp0); vecTmp0 = vecSignBits + 10; /* * negate sign to apply register based vshl */ vecTmp0 = -vecTmp0; /* * shift even elements */ vecSignL = vmovlbq(vecTmp0); vecTmpLev = vshlq(vecTmpLev, vecSignL); /* * shift odd elements */ vecSignL = vmovltq(vecTmp0); vecTmpLodd = vshlq(vecTmpLodd, vecSignL); /* * merge and narrow odd and even parts */ vecDst = vmovnbq_s32(vecDst, vecTmpLev); vecDst = vmovntq_s32(vecDst, vecTmpLodd); /* * set negative values to 0 */ vecDst = vdupq_m(vecDst, 0, vcmpltq_n_s16(vecIn, 0)); return vecDst; } #endif #endif /* defined (ARM_MATH_HELIUM) || defined(ARM_MATH_MVEI) */ #endif