/* ---------------------------------------------------------------------- * Project: CMSIS DSP Library * Title: arm_vlog_q31 * Description: Q31 vector log * * $Date: 19 July 2021 * $Revision: V1.10.0 * * Target Processor: Cortex-M and Cortex-A cores * -------------------------------------------------------------------- */ /* * Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. * * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the License); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an AS IS BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* This is a first attempt at implement a log in Q31 without using an interpolation table since there are already too many tables in CMSIS-DSP. But the accuracy is not that great for very small values ... */ #include "dsp/fast_math_functions.h" #define LOG_Q31_ACCURACY 31 /* Bit to represent the normalization factor It is Ceiling[Log2[LOG_Q31_ACCURACY]] of the previous value. The Log2 algorithm is assuming that the value x is 1 <= x < 2. But input value could be as small a 2^-LOG_Q31_ACCURACY which would give an integer part of -31. */ #define LOG_Q31_INTEGER_PART 5 /* 2.0 in Q30 or 0.5 in Q32 */ #define LOQ_Q31_THRESHOLD (1u << LOG_Q31_ACCURACY) #define LOQ_Q31_Q32_HALF LOQ_Q31_THRESHOLD #define LOQ_Q31_Q30_HALF (LOQ_Q31_Q32_HALF >> 2) /* 1.0 / Log2[Exp[1]] in Q31 */ #define LOG_Q31_INVLOG2EXP 0x58b90bfbuL /* Clay Turner algorithm */ static uint32_t arm_scalar_log_q31(uint32_t src) { int i; int32_t c = __CLZ(src); int32_t normalization=0; //printf("x q31 = %08X\n",src); /* 0.5 in q32 */ uint32_t inc = LOQ_Q31_Q32_HALF; /* Will compute y = log2(x) for 1 <= x < 2.0 */ uint64_t x; /* q32 */ uint32_t y=0; /* q5.58 */ int64_t tmp; /* Normalize and convert to q30 format */ x = src; if ((c-1) < 0) { x = x >> (1-c); } else { x = x << (c-1); } normalization = c; //printf("normalization = %d\n",normalization); //printf("x normalized q30 = %08llX\n",x); /* Compute the Log2. Result is in Q32 because we know 0 <= y < 1.0 */ for(i = 0; i < LOG_Q31_ACCURACY ; i++) { x = ((x*x) + LOQ_Q31_Q30_HALF) >> (LOG_Q31_ACCURACY - 1); if (x >= LOQ_Q31_THRESHOLD) { y += inc ; x = x >> 1; } inc = inc >> 1; } //printf("Log2 q32 = %08X\n",y); /* Convert the Log2 to Log and apply normalization. We compute (y - normalisation) * (1 / Log2[e]). */ /* q32 */ tmp = y - ((int64_t)normalization << (LOG_Q31_ACCURACY + 1)); //printf("Log2 q32 with normalization = %016llX\n",tmp); /* q27 * q31 -> q58 */ tmp = (tmp>>LOG_Q31_INTEGER_PART) * (int64_t)LOG_Q31_INVLOG2EXP ; //printf("Log10 q58 = %016llX\n",tmp); /* q5.26 */ y = tmp >> 32; //printf("Log10 q25 = %08X\n",y); return(y); } /** @ingroup groupFastMath */ /** @addtogroup vlog @{ */ /** @brief q31 vector of log values. @param[in] pSrc points to the input vector in q31 @param[out] pDst points to the output vector q5.26 @param[in] blockSize number of samples in each vector @return none */ void arm_vlog_q31( const q31_t * pSrc, q31_t * pDst, uint32_t blockSize) { uint32_t i; for(i=0;i < blockSize; i++) { pDst[i]=arm_scalar_log_q31(pSrc[i]); } } /** @} end of vlog group */