#include "FastMathQ31.h" #include #include "Error.h" #include "Test.h" #define SNR_THRESHOLD 100 /* Reference patterns are generated with a double precision computation. */ #define ABS_ERROR ((q31_t)2200) /* The error bounds is 0.014 and it is big but the test is really extreme with input values as small as 2^-31 ! The error is clearly diverging for the very small values. So, we have an error converging to 0.014 for outputs around -21. */ #define LOG_ABS_ERROR ((q31_t)30000000) void FastMathQ31::test_vlog_q31() { const q31_t *inp = input.ptr(); q31_t *outp = output.ptr(); //printf("Nb samples = %lu\n",ref.nbSamples()); arm_vlog_q31(inp,outp,ref.nbSamples()); //arm_vlog_q31(inp+124,outp+124,1); //printf("in = %08X\n",inp[124]); //printf("out = %08X\n",outp[124]); //ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_NEAR_EQ(ref,output,LOG_ABS_ERROR); ASSERT_EMPTY_TAIL(output); } void FastMathQ31::test_cos_q31() { const q31_t *inp = input.ptr(); q31_t *outp = output.ptr(); unsigned long i; for(i=0; i < ref.nbSamples(); i++) { outp[i]=arm_cos_q31(inp[i]); } ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_NEAR_EQ(ref,output,ABS_ERROR); } void FastMathQ31::test_sin_q31() { const q31_t *inp = input.ptr(); q31_t *outp = output.ptr(); unsigned long i; for(i=0; i < ref.nbSamples(); i++) { outp[i]=arm_sin_q31(inp[i]); } ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_NEAR_EQ(ref,output,ABS_ERROR); } void FastMathQ31::test_sqrt_q31() { const q31_t *inp = input.ptr(); q31_t *outp = output.ptr(); arm_status status; unsigned long i; for(i=0; i < ref.nbSamples(); i++) { status=arm_sqrt_q31(inp[i],&outp[i]); ASSERT_TRUE((status == ARM_MATH_SUCCESS) || ((inp[i] <= 0) && (status == ARM_MATH_ARGUMENT_ERROR))); } ASSERT_SNR(ref,output,(float32_t)SNR_THRESHOLD); ASSERT_NEAR_EQ(ref,output,ABS_ERROR); } void FastMathQ31::setUp(Testing::testID_t id,std::vector& paramsArgs,Client::PatternMgr *mgr) { (void)paramsArgs; switch(id) { case FastMathQ31::TEST_COS_Q31_1: { input.reload(FastMathQ31::ANGLES1_Q31_ID,mgr); ref.reload(FastMathQ31::COS1_Q31_ID,mgr); output.create(ref.nbSamples(),FastMathQ31::OUT_Q31_ID,mgr); } break; case FastMathQ31::TEST_SIN_Q31_2: { input.reload(FastMathQ31::ANGLES1_Q31_ID,mgr); ref.reload(FastMathQ31::SIN1_Q31_ID,mgr); output.create(ref.nbSamples(),FastMathQ31::OUT_Q31_ID,mgr); } break; case FastMathQ31::TEST_SQRT_Q31_3: { input.reload(FastMathQ31::SQRTINPUT1_Q31_ID,mgr); ref.reload(FastMathQ31::SQRT1_Q31_ID,mgr); output.create(ref.nbSamples(),FastMathQ31::OUT_Q31_ID,mgr); } break; case FastMathQ31::TEST_VLOG_Q31_4: { input.reload(FastMathQ31::LOGINPUT1_Q31_ID,mgr); ref.reload(FastMathQ31::LOG1_Q31_ID,mgr); output.create(ref.nbSamples(),FastMathQ31::OUT_Q31_ID,mgr); } break; case FastMathQ31::TEST_VLOG_Q31_5: { input.reload(FastMathQ31::LOGINPUT1_Q31_ID,mgr,3); ref.reload(FastMathQ31::LOG1_Q31_ID,mgr,3); output.create(ref.nbSamples(),FastMathQ31::OUT_Q31_ID,mgr); } break; case FastMathQ31::TEST_VLOG_Q31_6: { input.reload(FastMathQ31::LOGINPUT1_Q31_ID,mgr,8); ref.reload(FastMathQ31::LOG1_Q31_ID,mgr,8); output.create(ref.nbSamples(),FastMathQ31::OUT_Q31_ID,mgr); } break; case FastMathQ31::TEST_VLOG_Q31_7: { input.reload(FastMathQ31::LOGINPUT1_Q31_ID,mgr,11); ref.reload(FastMathQ31::LOG1_Q31_ID,mgr,11); output.create(ref.nbSamples(),FastMathQ31::OUT_Q31_ID,mgr); } break; } } void FastMathQ31::tearDown(Testing::testID_t id,Client::PatternMgr *mgr) { (void)id; output.dump(mgr); }