#include "UnaryTestsF32.h" #include "Error.h" #define SNR_THRESHOLD 120 /* Reference patterns are generated with a double precision computation. */ #define REL_ERROR (1.0e-5) #define ABS_ERROR (1.0e-5) /* Comparisons for Householder */ #define SNR_HOUSEHOLDER_THRESHOLD 140 #define REL_HOUSEHOLDER_ERROR (1.0e-7) #define ABS_HOUSEHOLDER_ERROR (1.0e-7) /* Comparisons for QR decomposition */ #define SNR_QR_THRESHOLD 90 #define REL_QR_ERROR (1.0e-4) #define ABS_QR_ERROR (2.0e-4) /* Comparisons for inverse */ /* Not very accurate for big matrix. But big matrix needed for checking the vectorized code */ #define SNR_THRESHOLD_INV 99 #define REL_ERROR_INV (3.0e-5) #define ABS_ERROR_INV (2.0e-5) /* Comparison for Cholesky */ #define SNR_THRESHOLD_CHOL 92 #define REL_ERROR_CHOL (1.0e-5) #define ABS_ERROR_CHOL (5.0e-4) /* LDLT comparison */ #define REL_ERROR_LDLT (1e-5) #define ABS_ERROR_LDLT (1e-5) #define REL_ERROR_LDLT_SPDO (1e-5) #define ABS_ERROR_LDLT_SDPO (2e-1) /* Upper bound of maximum matrix dimension used by Python */ #define MAXMATRIXDIM 40 static void checkInnerTailOverflow(float32_t *b) { ASSERT_TRUE(b[0] == 0); ASSERT_TRUE(b[1] == 0); ASSERT_TRUE(b[2] == 0); ASSERT_TRUE(b[3] == 0); } #define LOADDATA2() \ const float32_t *inp1=input1.ptr(); \ const float32_t *inp2=input2.ptr(); \ \ float32_t *ap=a.ptr(); \ float32_t *bp=b.ptr(); \ \ float32_t *outp=output.ptr(); \ int16_t *dimsp = dims.ptr(); \ int nbMatrixes = dims.nbSamples() >> 1;\ int rows,columns; \ int i; #define LOADDATA1() \ const float32_t *inp1=input1.ptr(); \ \ float32_t *ap=a.ptr(); \ \ float32_t *outp=output.ptr(); \ int16_t *dimsp = dims.ptr(); \ int nbMatrixes = dims.nbSamples() >> 1;\ int rows,columns; \ int i; #define PREPAREDATA2() \ in1.numRows=rows; \ in1.numCols=columns; \ memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\ in1.pData = ap; \ \ in2.numRows=rows; \ in2.numCols=columns; \ memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\ in2.pData = bp; \ \ out.numRows=rows; \ out.numCols=columns; \ out.pData = outp; #define PREPAREDATALT() \ in1.numRows=rows; \ in1.numCols=rows; \ memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*rows); \ in1.pData = ap; \ \ in2.numRows=rows; \ in2.numCols=columns; \ memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\ in2.pData = bp; \ \ out.numRows=rows; \ out.numCols=columns; \ out.pData = outp; #define PREPAREDATA1(TRANSPOSED) \ in1.numRows=rows; \ in1.numCols=columns; \ memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\ in1.pData = ap; \ \ if (TRANSPOSED) \ { \ out.numRows=columns; \ out.numCols=rows; \ } \ else \ { \ out.numRows=rows; \ out.numCols=columns; \ } \ out.pData = outp; #define PREPAREDATA1C(TRANSPOSED) \ in1.numRows=rows; \ in1.numCols=columns; \ memcpy((void*)ap,(const void*)inp1,2*sizeof(float32_t)*rows*columns);\ in1.pData = ap; \ \ if (TRANSPOSED) \ { \ out.numRows=columns; \ out.numCols=rows; \ } \ else \ { \ out.numRows=rows; \ out.numCols=columns; \ } \ out.pData = outp; #define LOADVECDATA2() \ const float32_t *inp1=input1.ptr(); \ const float32_t *inp2=input2.ptr(); \ \ float32_t *ap=a.ptr(); \ float32_t *bp=b.ptr(); \ \ float32_t *outp=output.ptr(); \ int16_t *dimsp = dims.ptr(); \ int nbMatrixes = dims.nbSamples() / 2;\ int rows,internal; \ int i; #define PREPAREVECDATA2() \ in1.numRows=rows; \ in1.numCols=internal; \ memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*internal);\ in1.pData = ap; \ \ memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*internal); #define PREPAREDATALL1() \ in1.numRows=rows; \ in1.numCols=columns; \ memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\ in1.pData = ap; \ \ outll.numRows=rows; \ outll.numCols=columns; \ \ outll.pData = outllp; #define SWAP_ROWS(A,i,j) \ for(int w=0;w < n; w++) \ { \ float64_t tmp; \ tmp = A[i*n + w]; \ A[i*n + w] = A[j*n + w];\ A[j*n + w] = tmp; \ } void UnaryTestsF32::test_householder_f32() { int32_t vecDim; const int16_t *dimsp = dims.ptr(); const int nbVectors = dims.nbSamples(); const float32_t *inp1=input1.ptr(); float32_t *outp=output.ptr(); float32_t *outBetap=outputBeta.ptr(); for(int i=0; i < nbVectors ; i++) { vecDim = *dimsp++; float32_t beta = arm_householder_f32(inp1,DEFAULT_HOUSEHOLDER_THRESHOLD_F32,vecDim,outp); *outBetap = beta; outp += vecDim; inp1 += vecDim; outBetap++; checkInnerTailOverflow(outp); checkInnerTailOverflow(outBetap); } ASSERT_EMPTY_TAIL(output); ASSERT_EMPTY_TAIL(outputBeta); ASSERT_SNR(output,ref,(float32_t)SNR_HOUSEHOLDER_THRESHOLD); ASSERT_SNR(outputBeta,refBeta,(float32_t)SNR_HOUSEHOLDER_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_HOUSEHOLDER_ERROR,REL_HOUSEHOLDER_ERROR); ASSERT_CLOSE_ERROR(outputBeta,refBeta,ABS_HOUSEHOLDER_ERROR,REL_HOUSEHOLDER_ERROR); } void UnaryTestsF32::test_mat_qr_f32() { int32_t rows, columns, rank; int nb; const int16_t *dimsp = dims.ptr(); const int nbMatrixes = dims.nbSamples() / 3; const float32_t *inp1=input1.ptr(); float32_t *outTaup=outputTau.ptr(); float32_t *outRp=outputR.ptr(); float32_t *outQp=outputQ.ptr(); float32_t *pTmpA=a.ptr(); float32_t *pTmpB=b.ptr(); (void) outTaup; (void) outRp; (void) outQp; (void)nbMatrixes; (void)nb; nb=0; for(int i=0; i < nbMatrixes ; i++) //for(int i=0; i < 1 ; i++) { rows = *dimsp++; columns = *dimsp++; rank = *dimsp++; (void)rank; //printf("--> %d %d\n",nb,i); nb += rows * columns; in1.numRows=rows; in1.numCols=columns; in1.pData = (float32_t*)inp1; outR.numRows = rows; outR.numCols = columns; outR.pData = (float32_t*)outRp; outQ.numRows = rows; outQ.numCols = rows; outQ.pData = (float32_t*)outQp; arm_status status=arm_mat_qr_f32(&in1,DEFAULT_HOUSEHOLDER_THRESHOLD_F32,&outR,&outQ,outTaup,pTmpA,pTmpB); ASSERT_TRUE(status==ARM_MATH_SUCCESS); inp1 += rows * columns; outRp += rows * columns; outQp += rows * rows; outTaup += columns; checkInnerTailOverflow(outRp); checkInnerTailOverflow(outQp); checkInnerTailOverflow(outTaup); } ASSERT_EMPTY_TAIL(outputR); ASSERT_EMPTY_TAIL(outputQ); ASSERT_EMPTY_TAIL(outputTau); ASSERT_SNR(refQ,outputQ,(float32_t)SNR_QR_THRESHOLD); ASSERT_SNR(refR,outputR,(float32_t)SNR_QR_THRESHOLD); ASSERT_SNR(refTau,outputTau,(float32_t)SNR_QR_THRESHOLD); ASSERT_CLOSE_ERROR(refQ,outputQ,ABS_QR_ERROR,REL_QR_ERROR); ASSERT_CLOSE_ERROR(refR,outputR,ABS_QR_ERROR,REL_QR_ERROR); ASSERT_CLOSE_ERROR(refTau,outputTau,ABS_QR_ERROR,REL_QR_ERROR); } void UnaryTestsF32::test_mat_vec_mult_f32() { LOADVECDATA2(); for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; internal = *dimsp++; PREPAREVECDATA2(); arm_mat_vec_mult_f32(&this->in1, bp, outp); outp += rows ; checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR); } void UnaryTestsF32::test_mat_add_f32() { LOADDATA2(); arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = *dimsp++; PREPAREDATA2(); status=arm_mat_add_f32(&this->in1,&this->in2,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR); } void UnaryTestsF32::test_mat_sub_f32() { LOADDATA2(); arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = *dimsp++; PREPAREDATA2(); status=arm_mat_sub_f32(&this->in1,&this->in2,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR); } void UnaryTestsF32::test_mat_scale_f32() { LOADDATA1(); arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = *dimsp++; PREPAREDATA1(false); status=arm_mat_scale_f32(&this->in1,0.5f,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR); } void UnaryTestsF32::test_mat_trans_f32() { LOADDATA1(); arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = *dimsp++; PREPAREDATA1(true); status=arm_mat_trans_f32(&this->in1,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR); } void UnaryTestsF32::test_mat_cmplx_trans_f32() { LOADDATA1(); arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = *dimsp++; PREPAREDATA1C(true); status=arm_mat_cmplx_trans_f32(&this->in1,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += 2*(rows * columns); checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR); } static void refInnerTail(float32_t *b) { b[0] = 1.0f; b[1] = -2.0f; b[2] = 3.0f; b[3] = -4.0f; } static void checkInnerTail(float32_t *b) { ASSERT_TRUE(b[0] == 1.0f); ASSERT_TRUE(b[1] == -2.0f); ASSERT_TRUE(b[2] == 3.0f); ASSERT_TRUE(b[3] == -4.0f); } void UnaryTestsF32::test_mat_inverse_f32() { const float32_t *inp1=input1.ptr(); float32_t *ap=a.ptr(); float32_t *outp=output.ptr(); int16_t *dimsp = dims.ptr(); int nbMatrixes = dims.nbSamples(); int rows,columns; int i; arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = rows; PREPAREDATA1(false); refInnerTail(outp+(rows * columns)); status=arm_mat_inverse_f32(&this->in1,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); inp1 += (rows * columns); checkInnerTail(outp); } ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_INV); ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV); } void UnaryTestsF32::test_mat_cholesky_dpo_f32() { float32_t *ap=a.ptr(); const float32_t *inp1=input1.ptr(); float32_t *outp=output.ptr(); int16_t *dimsp = dims.ptr(); int nbMatrixes = dims.nbSamples(); int rows,columns; int i; arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = rows; PREPAREDATA1(false); status=arm_mat_cholesky_f32(&this->in1,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); inp1 += (rows * columns); checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_CHOL); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR_CHOL,REL_ERROR_CHOL); } void UnaryTestsF32::test_solve_upper_triangular_f32() { float32_t *ap=a.ptr(); const float32_t *inp1=input1.ptr(); float32_t *bp=b.ptr(); const float32_t *inp2=input2.ptr(); float32_t *outp=output.ptr(); int16_t *dimsp = dims.ptr(); int nbMatrixes = dims.nbSamples()>>1; int rows,columns; int i; arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = *dimsp++; PREPAREDATALT(); status=arm_mat_solve_upper_triangular_f32(&this->in1,&this->in2,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); inp1 += (rows * rows); inp2 += (rows * columns); checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR); } void UnaryTestsF32::test_solve_lower_triangular_f32() { float32_t *ap=a.ptr(); const float32_t *inp1=input1.ptr(); float32_t *bp=b.ptr(); const float32_t *inp2=input2.ptr(); float32_t *outp=output.ptr(); int16_t *dimsp = dims.ptr(); int nbMatrixes = dims.nbSamples() >> 1; int rows,columns; int i; arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = *dimsp++; PREPAREDATALT(); status=arm_mat_solve_lower_triangular_f32(&this->in1,&this->in2,&this->out); ASSERT_TRUE(status==ARM_MATH_SUCCESS); outp += (rows * columns); inp1 += (rows * rows); inp2 += (rows * columns); checkInnerTailOverflow(outp); } ASSERT_EMPTY_TAIL(output); ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD); ASSERT_CLOSE_ERROR(ref,output,ABS_ERROR,REL_ERROR); } static void trans_f64(const float64_t *src, float64_t *dst, int n) { for(int r=0; rin1.pData,(const float64_t*)tmpb,tmpc,n); mult_f64_f64((const float64_t*)tmpa,(const float64_t*)tmpc,outa,n); /* Compute L D L^t */ trans_f32_f64((const float32_t*)this->outll.pData,tmpc,n); mult_f32_f64((const float32_t*)this->outd.pData,(const float64_t*)tmpc,tmpa,n); mult_f32_f64((const float32_t*)this->outll.pData,(const float64_t*)tmpa,outb,n); } void UnaryTestsF32::test_mat_ldl_f32() { float32_t *ap=a.ptr(); const float32_t *inp1=input1.ptr(); float32_t *outllp=outputll.ptr(); float32_t *outdp=outputd.ptr(); int16_t *outpp=outputp.ptr(); outa=outputa.ptr(); outb=outputb.ptr(); int16_t *dimsp = dims.ptr(); int nbMatrixes = dims.nbSamples(); int rows,columns; int i; arm_status status; for(i=0;i < nbMatrixes ; i ++) { rows = *dimsp++; columns = rows; PREPAREDATALL1(); outd.numRows=rows; outd.numCols=columns; outd.pData=outdp; memset(outpp,0,rows*sizeof(uint16_t)); memset(outdp,0,columns*rows*sizeof(float32_t)); status=arm_mat_ldlt_f32(&this->in1,&this->outll,&this->outd,(uint16_t*)outpp); ASSERT_TRUE(status==ARM_MATH_SUCCESS); compute_ldlt_error(rows,outpp); outllp += (rows * columns); outdp += (rows * columns); outpp += rows; outa += (rows * columns); outb +=(rows * columns); inp1 += (rows * columns); checkInnerTailOverflow(outllp); checkInnerTailOverflow(outdp); } ASSERT_EMPTY_TAIL(outputll); ASSERT_EMPTY_TAIL(outputd); ASSERT_EMPTY_TAIL(outputp); ASSERT_EMPTY_TAIL(outputa); ASSERT_EMPTY_TAIL(outputb); ASSERT_CLOSE_ERROR(outputa,outputb,snrAbs,snrRel); } void UnaryTestsF32::setUp(Testing::testID_t id,std::vector& params,Client::PatternMgr *mgr) { (void)params; switch(id) { case TEST_MAT_ADD_F32_1: input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr); input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr); ref.reload(UnaryTestsF32::REFADD1_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr); break; case TEST_MAT_SUB_F32_2: input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr); input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr); ref.reload(UnaryTestsF32::REFSUB1_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr); break; case TEST_MAT_SCALE_F32_3: input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr); ref.reload(UnaryTestsF32::REFSCALE1_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); break; case TEST_MAT_TRANS_F32_4: input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr); ref.reload(UnaryTestsF32::REFTRANS1_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); break; case TEST_MAT_INVERSE_F32_5: input1.reload(UnaryTestsF32::INPUTSINV_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSINVERT1_S16_ID,mgr); ref.reload(UnaryTestsF32::REFINV1_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); break; case TEST_MAT_VEC_MULT_F32_6: input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr); input2.reload(UnaryTestsF32::INPUTVEC1_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr); ref.reload(UnaryTestsF32::REFVECMUL1_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); b.create(MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr); break; case TEST_MAT_CMPLX_TRANS_F32_7: input1.reload(UnaryTestsF32::INPUTSC1_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr); ref.reload(UnaryTestsF32::REFTRANSC1_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); break; case TEST_MAT_CHOLESKY_DPO_F32_8: input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr); ref.reload(UnaryTestsF32::REFCHOLESKY1_DPO_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); break; case TEST_SOLVE_UPPER_TRIANGULAR_F32_9: input1.reload(UnaryTestsF32::INPUT_MAT_UTSOLVE_F32_ID,mgr); input2.reload(UnaryTestsF32::INPUT_VEC_LTSOLVE_F32_ID,mgr); dims.reload(UnaryTestsF32::DIM_LTSOLVE_F32_ID,mgr); ref.reload(UnaryTestsF32::REF_UT_SOLVE_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr); break; case TEST_SOLVE_LOWER_TRIANGULAR_F32_10: input1.reload(UnaryTestsF32::INPUT_MAT_LTSOLVE_F32_ID,mgr); input2.reload(UnaryTestsF32::INPUT_VEC_LTSOLVE_F32_ID,mgr); dims.reload(UnaryTestsF32::DIM_LTSOLVE_F32_ID,mgr); ref.reload(UnaryTestsF32::REF_LT_SOLVE_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr); break; case TEST_MAT_LDL_F32_11: // Definite positive test input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_DPO_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSCHOLESKY1_DPO_S16_ID,mgr); outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr); outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr); outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr); outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr); outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr); tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr); tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr); this->snrRel=REL_ERROR_LDLT; this->snrAbs=ABS_ERROR_LDLT; break; case TEST_MAT_LDL_F32_12: // Semi definite positive test input1.reload(UnaryTestsF32::INPUTSCHOLESKY1_SDPO_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMSCHOLESKY1_SDPO_S16_ID,mgr); outputll.create(input1.nbSamples(),UnaryTestsF32::LL_F32_ID,mgr); outputd.create(input1.nbSamples(),UnaryTestsF32::D_F32_ID,mgr); outputp.create(input1.nbSamples(),UnaryTestsF32::PERM_S16_ID,mgr); outputa.create(input1.nbSamples(),UnaryTestsF32::OUTA_F64_ID,mgr); outputb.create(input1.nbSamples(),UnaryTestsF32::OUTB_F64_ID,mgr); a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr); tmpapat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F64_ID,mgr); tmpbpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPC_F64_ID,mgr); tmpcpat.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPD_F64_ID,mgr); this->snrRel=REL_ERROR_LDLT_SPDO; this->snrAbs=ABS_ERROR_LDLT_SDPO; break; case TEST_HOUSEHOLDER_F32_13: input1.reload(UnaryTestsF32::INPUTS_HOUSEHOLDER_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMS_HOUSEHOLDER_S16_ID,mgr); ref.reload(UnaryTestsF32::REF_HOUSEHOLDER_V_F32_ID,mgr); refBeta.reload(UnaryTestsF32::REF_HOUSEHOLDER_BETA_F32_ID,mgr); output.create(ref.nbSamples(),UnaryTestsF32::TMPA_F32_ID,mgr); outputBeta.create(refBeta.nbSamples(),UnaryTestsF32::TMPB_F32_ID,mgr); break; case TEST_MAT_QR_F32_14: input1.reload(UnaryTestsF32::INPUTS_QR_F32_ID,mgr); dims.reload(UnaryTestsF32::DIMS_QR_S16_ID,mgr); refTau.reload(UnaryTestsF32::REF_QR_TAU_F32_ID,mgr); refR.reload(UnaryTestsF32::REF_QR_R_F32_ID,mgr); refQ.reload(UnaryTestsF32::REF_QR_Q_F32_ID,mgr); outputTau.create(refTau.nbSamples(),UnaryTestsF32::TMPA_F32_ID,mgr); outputR.create(refR.nbSamples(),UnaryTestsF32::TMPB_F32_ID,mgr); outputQ.create(refQ.nbSamples(),UnaryTestsF32::TMPC_F32_ID,mgr); a.create(47,UnaryTestsF32::TMPC_F32_ID,mgr); b.create(47,UnaryTestsF32::TMPD_F32_ID,mgr); break; } } void UnaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr) { (void)id; (void)mgr; switch(id) { case TEST_MAT_LDL_F32_11: //outputll.dump(mgr); break; case TEST_MAT_QR_F32_14: //outputR.dump(mgr); break; } //output.dump(mgr); }