You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
785 lines
24 KiB
C
785 lines
24 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_mat_mult_opt_q31.c
|
|
* Description: Q31 matrix multiplication
|
|
*
|
|
* $Date: 3 Nov 2021
|
|
* $Revision: V1.10.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/matrix_functions.h"
|
|
|
|
/**
|
|
@ingroup groupMatrix
|
|
*/
|
|
|
|
/**
|
|
@addtogroup MatrixMult
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
@brief Q31 matrix multiplication.
|
|
@param[in] pSrcA points to the first input matrix structure
|
|
@param[in] pSrcB points to the second input matrix structure
|
|
@param[out] pDst points to output matrix structure
|
|
@param[in] pState points to the array for storing intermediate results
|
|
@return execution status
|
|
- \ref ARM_MATH_SUCCESS : Operation successful
|
|
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
|
|
|
|
@par Scaling and Overflow Behavior
|
|
The function is implemented using an internal 64-bit accumulator.
|
|
The accumulator has a 2.62 format and maintains full precision of the intermediate
|
|
multiplication results but provides only a single guard bit. There is no saturation
|
|
on intermediate additions. Thus, if the accumulator overflows it wraps around and
|
|
distorts the result. The input signals should be scaled down to avoid intermediate
|
|
overflows. The input is thus scaled down by log2(numColsA) bits
|
|
to avoid overflows, as a total of numColsA additions are performed internally.
|
|
The 2.62 accumulator is right shifted by 31 bits and saturated to 1.31 format to yield the final result.
|
|
@remark
|
|
Refer to \ref arm_mat_mult_fast_q31() for a faster but less precise implementation of this function.
|
|
@remark
|
|
This function is a faster implementation of arm_mat_mult_q31 for MVE but it is requiring
|
|
additional storage for intermediate results.
|
|
*/
|
|
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#define MATRIX_DIM2 2
|
|
#define MATRIX_DIM3 3
|
|
#define MATRIX_DIM4 4
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_opt_q31_2x2_mve(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst)
|
|
{
|
|
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q31_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint32x4_t vecColBOffs;
|
|
q31_t *pInA0 = pInA;
|
|
q31_t *pInA1 = pInA0 + MATRIX_DIM2;
|
|
q63_t acc0, acc1;
|
|
q31x4_t vecB, vecA0, vecA1;
|
|
/* enable predication to disable half of vector elements */
|
|
mve_pred16_t p0 = vctp32q(MATRIX_DIM2);
|
|
|
|
vecColBOffs = vidupq_u32((uint32_t)0, 1);
|
|
vecColBOffs = vecColBOffs * MATRIX_DIM2;
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
/* load 1st B column (partial load) */
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
/* load A rows */
|
|
vecA0 = vldrwq_s32(pInA0);
|
|
vecA1 = vldrwq_s32(pInA1);
|
|
|
|
acc0 = vrmlaldavhq(vecA0, vecB);
|
|
acc1 = vrmlaldavhq(vecA1, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
|
|
pOut[0 * MATRIX_DIM2] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM2] = (q31_t) acc1;
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vrmlaldavhq(vecA0, vecB);
|
|
acc1 = vrmlaldavhq(vecA1, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
|
|
pOut[0 * MATRIX_DIM2] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM2] = (q31_t) acc1;
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_opt_q31_3x3_mve(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst)
|
|
{
|
|
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q31_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint32x4_t vecColBOffs;
|
|
q31_t *pInA0 = pInA;
|
|
q31_t *pInA1 = pInA0 + MATRIX_DIM3;
|
|
q31_t *pInA2 = pInA1 + MATRIX_DIM3;
|
|
q63_t acc0, acc1, acc2;
|
|
q31x4_t vecB, vecA;
|
|
/* enable predication to disable last (4th) vector element */
|
|
mve_pred16_t p0 = vctp32q(MATRIX_DIM3);
|
|
|
|
vecColBOffs = vidupq_u32((uint32_t)0, 1);
|
|
vecColBOffs = vecColBOffs * MATRIX_DIM3;
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_z_s32(pInB, vecColBOffs, p0);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM3] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM3] = (q31_t) acc2;
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_opt_q31_4x4_mve(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst)
|
|
{
|
|
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q31_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint32x4_t vecColBOffs;
|
|
q31_t *pInA0 = pInA;
|
|
q31_t *pInA1 = pInA0 + MATRIX_DIM4;
|
|
q31_t *pInA2 = pInA1 + MATRIX_DIM4;
|
|
q31_t *pInA3 = pInA2 + MATRIX_DIM4;
|
|
q63_t acc0, acc1, acc2, acc3;
|
|
q31x4_t vecB, vecA;
|
|
|
|
vecColBOffs = vidupq_u32((uint32_t)0, 4);
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA3);
|
|
acc3 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
|
|
pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA3);
|
|
acc3 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
|
|
pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
|
|
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA3);
|
|
acc3 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
|
|
pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
|
|
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrwq_gather_shifted_offset_s32(pInB, vecColBOffs);
|
|
|
|
vecA = vldrwq_s32(pInA0);
|
|
acc0 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA1);
|
|
acc1 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA2);
|
|
acc2 = vrmlaldavhq(vecA, vecB);
|
|
vecA = vldrwq_s32(pInA3);
|
|
acc3 = vrmlaldavhq(vecA, vecB);
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q31_t) acc0;
|
|
pOut[1 * MATRIX_DIM4] = (q31_t) acc1;
|
|
pOut[2 * MATRIX_DIM4] = (q31_t) acc2;
|
|
pOut[3 * MATRIX_DIM4] = (q31_t) acc3;
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
arm_status arm_mat_mult_opt_q31(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst,
|
|
q31_t *pState)
|
|
{
|
|
q31_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q31_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q31_t *pInA2;
|
|
q31_t *pInB2;
|
|
q31_t *px; /* Temporary output data matrix pointer */
|
|
q31_t *px2; /* Temporary output data matrix pointer */
|
|
uint32_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
|
uint32_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
|
uint32_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
|
uint32_t numRowsB = pSrcB->numRows; /* number of rows of input matrix A */
|
|
uint32_t col, i = 0u, j, row = numRowsB; /* loop counters */
|
|
q31_t *pSrcBT = pState; /* input data matrix pointer for transpose */
|
|
uint32_t blkCnt; /* loop counters */
|
|
arm_status status; /* Status of matrix multiplication */
|
|
arm_matrix_instance_q31 BT;
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) || (pSrcB->numCols != pDst->numCols)) {
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
} else
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
{
|
|
|
|
/* small squared matrix specialized routines */
|
|
if(numRowsA == numColsB && numColsB == numColsA) {
|
|
if (numRowsA == 1)
|
|
{
|
|
q63_t sum = (q63_t) *pInA * *pInB;
|
|
pDst->pData[0] = (q31_t)(sum >> 31);
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
else if(numRowsA == 2)
|
|
return arm_mat_mult_opt_q31_2x2_mve(pSrcA, pSrcB, pDst);
|
|
else if(numRowsA == 3)
|
|
return arm_mat_mult_opt_q31_3x3_mve(pSrcA, pSrcB, pDst);
|
|
else if (numRowsA == 4)
|
|
return arm_mat_mult_opt_q31_4x4_mve(pSrcA, pSrcB, pDst);
|
|
}
|
|
|
|
|
|
/*
|
|
* Matrix transpose
|
|
*/
|
|
BT.numRows = numColsB;
|
|
BT.numCols = numRowsB;
|
|
BT.pData = pSrcBT;
|
|
|
|
arm_mat_trans_q31(pSrcB, &BT);
|
|
|
|
|
|
/*
|
|
* Reset the variables for the usage in the following multiplication process
|
|
*/
|
|
i = 0;
|
|
row = numRowsA >> 1;
|
|
px = pDst->pData;
|
|
px2 = px + numColsB;
|
|
|
|
/*
|
|
* main loop
|
|
* compute 2 x 2 output blocks
|
|
* with dot products (Matrix A rows * Transposed MAtrix B rows)
|
|
*/
|
|
while (row > 0u) {
|
|
/*
|
|
* For every row wise process, the column loop counter is to be initiated
|
|
* Compute 2 columns and 2 rows in parrallel
|
|
*/
|
|
col = numColsB >> 1;
|
|
j = 0;
|
|
|
|
/*
|
|
* column pair loop
|
|
*/
|
|
while (col > 0u) {
|
|
q31_t const *pSrcAVec, *pSrcBVec, *pSrcA2Vec, *pSrcB2Vec;
|
|
q31x4_t vecA, vecA2, vecB, vecB2;
|
|
q63_t acc0, acc1, acc2, acc3;
|
|
|
|
/*
|
|
* Initiate the pointers
|
|
* - 2 x consecutive Matrix A rows (i increment is 2 x numColsA)
|
|
* - 2 x consecutive Matrix B' rows (j increment is 2 x numRowsB)
|
|
*/
|
|
pInA = pSrcA->pData + i;
|
|
pInA2 = pInA + numColsA;
|
|
pInB = pSrcBT + j;
|
|
pInB2 = pInB + numRowsB;
|
|
|
|
|
|
pSrcAVec = (q31_t const *) pInA;
|
|
pSrcA2Vec = (q31_t const *) pInA2;
|
|
pSrcBVec = (q31_t const *) pInB;
|
|
pSrcB2Vec = (q31_t const *) pInB2;
|
|
|
|
acc0 = 0LL;
|
|
acc1 = 0LL;
|
|
acc2 = 0LL;
|
|
acc3 = 0LL;
|
|
|
|
/* load scheduling */
|
|
vecA = vld1q(pSrcAVec);
|
|
pSrcAVec += 4;
|
|
|
|
blkCnt = (numColsA / 4);
|
|
while (blkCnt > 0U) {
|
|
vecB = vld1q(pSrcBVec);
|
|
pSrcBVec += 4;
|
|
acc0 = vrmlaldavhaq(acc0, vecA, vecB);
|
|
vecA2 = vld1q(pSrcA2Vec);
|
|
pSrcA2Vec += 4;
|
|
acc1 = vrmlaldavhaq(acc1, vecA2, vecB);
|
|
vecB2 = vld1q(pSrcB2Vec);
|
|
pSrcB2Vec += 4;
|
|
acc2 = vrmlaldavhaq(acc2, vecA, vecB2);
|
|
vecA = vld1q(pSrcAVec);
|
|
pSrcAVec += 4;
|
|
acc3 = vrmlaldavhaq(acc3, vecA2, vecB2);
|
|
|
|
blkCnt--;
|
|
}
|
|
/*
|
|
* tail
|
|
* (will be merged thru tail predication)
|
|
*/
|
|
blkCnt = (numColsA & 3);
|
|
if (blkCnt > 0U) {
|
|
mve_pred16_t p0 = vctp32q(blkCnt);
|
|
vecB = vld1q(pSrcBVec);
|
|
acc0 = vrmlaldavhaq_p(acc0, vecA, vecB, p0);
|
|
vecA2 = vld1q(pSrcA2Vec);
|
|
acc1 = vrmlaldavhaq_p(acc1, vecA2, vecB, p0);
|
|
vecB2 = vld1q(pSrcB2Vec);
|
|
acc2 = vrmlaldavhaq_p(acc2, vecA, vecB2, p0);
|
|
vecA = vld1q(pSrcAVec);
|
|
acc3 = vrmlaldavhaq_p(acc3, vecA2, vecB2, p0);
|
|
}
|
|
|
|
/* Convert to 1.31 */
|
|
acc0 = asrl(acc0, 23);
|
|
acc1 = asrl(acc1, 23);
|
|
acc2 = asrl(acc2, 23);
|
|
acc3 = asrl(acc3, 23);
|
|
|
|
/* Store the results (2 x 2 block) in the destination buffer */
|
|
*px++ = (q31_t) acc0;
|
|
*px++ = (q31_t) acc2;
|
|
*px2++ = (q31_t) acc1;
|
|
*px2++ = (q31_t) acc3;
|
|
|
|
j += numRowsB * 2;
|
|
/*
|
|
* Decrement the column pair loop counter
|
|
*/
|
|
col--;
|
|
|
|
}
|
|
|
|
i = i + numColsA * 2;
|
|
px = px2 + (numColsB & 1u);
|
|
px2 = px + numColsB;
|
|
/*
|
|
* Decrement the row pair loop counter
|
|
*/
|
|
row--;
|
|
}
|
|
|
|
/*
|
|
* Compute remaining row and/or column below
|
|
*/
|
|
if (numColsB & 1u) {
|
|
row = numRowsA & (~0x1); //avoid redundant computation
|
|
px = pDst->pData + numColsB - 1;
|
|
i = 0;
|
|
|
|
/*
|
|
* row loop
|
|
*/
|
|
while (row > 0) {
|
|
q31_t const *pSrcAVec, *pSrcBVec;
|
|
q31x4_t vecA, vecB;
|
|
q63_t acc0;
|
|
|
|
/*
|
|
* point to last column in matrix B
|
|
*/
|
|
pInB = pSrcBT + numRowsB * (numColsB - 1);
|
|
pInA = pSrcA->pData + i;
|
|
|
|
pSrcAVec = (q31_t const *) pInA;
|
|
pSrcBVec = (q31_t const *) pInB;
|
|
|
|
/* single dot-product */
|
|
acc0 = 0LL;
|
|
blkCnt = (numColsA / 4);
|
|
while (blkCnt > 0U) {
|
|
vecA = vld1q(pSrcAVec);
|
|
pSrcAVec += 4;
|
|
vecB = vld1q(pSrcBVec);
|
|
pSrcBVec += 4;
|
|
acc0 = vrmlaldavhaq(acc0, vecA, vecB);
|
|
|
|
blkCnt--;
|
|
}
|
|
/*
|
|
* tail
|
|
* (will be merged thru tail predication)
|
|
*/
|
|
blkCnt = (numColsA & 3);
|
|
if (blkCnt > 0U) {
|
|
mve_pred16_t p0 = vctp32q(blkCnt);
|
|
vecA = vld1q(pSrcAVec);
|
|
vecB = vld1q(pSrcBVec);
|
|
acc0 = vrmlaldavhaq_p(acc0, vecA, vecB, p0);
|
|
}
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
*px = (q31_t) acc0;
|
|
|
|
px += numColsB;
|
|
|
|
i += numColsA;
|
|
/*
|
|
* Decrement the row loop counter
|
|
*/
|
|
row--;
|
|
}
|
|
}
|
|
|
|
if (numRowsA & 1u) {
|
|
col = numColsB;
|
|
i = 0u;
|
|
/*
|
|
* point to last row in output matrix
|
|
*/
|
|
px = pDst->pData + (numColsB) * (numRowsA - 1);
|
|
/*
|
|
* col loop
|
|
*/
|
|
while (col > 0) {
|
|
q31_t const *pSrcAVec, *pSrcBVec;
|
|
q31x4_t vecA, vecB;
|
|
q63_t acc0;
|
|
|
|
/*
|
|
* point to last row in matrix A
|
|
*/
|
|
pInA = pSrcA->pData + (numRowsA - 1) * numColsA;
|
|
pInB = pSrcBT + i;
|
|
|
|
/*
|
|
* Set the variable sum, that acts as accumulator, to zero
|
|
*/
|
|
pSrcAVec = (q31_t const *) pInA;
|
|
pSrcBVec = (q31_t const *) pInB;
|
|
acc0 = 0LL;
|
|
|
|
blkCnt = (numColsA / 4);
|
|
while (blkCnt > 0U) {
|
|
vecA = vld1q(pSrcAVec);
|
|
pSrcAVec += 4;
|
|
vecB = vld1q(pSrcBVec);
|
|
pSrcBVec += 4;
|
|
acc0 = vrmlaldavhaq(acc0, vecA, vecB);
|
|
|
|
blkCnt--;
|
|
}
|
|
/*
|
|
* tail
|
|
* (will be merged thru tail predication)
|
|
*/
|
|
blkCnt = (numColsA & 3);
|
|
if (blkCnt > 0U) {
|
|
mve_pred16_t p0 = vctp32q(blkCnt);
|
|
vecA = vld1q(pSrcAVec);
|
|
vecB = vld1q(pSrcBVec);
|
|
acc0 = vrmlaldavhaq_p(acc0, vecA, vecB, p0);
|
|
}
|
|
|
|
acc0 = asrl(acc0, 23);
|
|
*px++ = (q31_t) acc0;
|
|
|
|
i += numColsA;
|
|
/*
|
|
* Decrement the col loop counter
|
|
*/
|
|
col--;
|
|
}
|
|
}
|
|
/* Set status as ARM_MATH_SUCCESS */
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (status);
|
|
}
|
|
|
|
#else
|
|
arm_status arm_mat_mult_opt_q31(
|
|
const arm_matrix_instance_q31 * pSrcA,
|
|
const arm_matrix_instance_q31 * pSrcB,
|
|
arm_matrix_instance_q31 * pDst,
|
|
q31_t *pState)
|
|
{
|
|
q31_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
|
|
q31_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
|
|
q31_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
|
|
q31_t *pInB = pSrcB->pData; /* Input data matrix pointer B */
|
|
q31_t *pOut = pDst->pData; /* Output data matrix pointer */
|
|
q31_t *px; /* Temporary output data matrix pointer */
|
|
q63_t sum; /* Accumulator */
|
|
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
|
|
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
|
|
uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
|
|
arm_status status; /* Status of matrix multiplication */
|
|
(void)pState;
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
|
/* row loop */
|
|
do
|
|
{
|
|
/* Output pointer is set to starting address of row being processed */
|
|
px = pOut + i;
|
|
|
|
/* For every row wise process, column loop counter is to be initiated */
|
|
col = numColsB;
|
|
|
|
/* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
|
|
pIn2 = pSrcB->pData;
|
|
|
|
/* column loop */
|
|
do
|
|
{
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
|
sum = 0;
|
|
|
|
/* Initialize pointer pIn1 to point to starting address of column being processed */
|
|
pIn1 = pInA;
|
|
|
|
#if defined (ARM_MATH_LOOPUNROLL)
|
|
|
|
/* Loop unrolling: Compute 4 MACs at a time. */
|
|
colCnt = numColsA >> 2U;
|
|
|
|
/* matrix multiplication */
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
|
|
/* Perform the multiply-accumulates */
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Loop unrolling: Compute remaining MACs */
|
|
colCnt = numColsA % 0x4U;
|
|
|
|
#else
|
|
|
|
/* Initialize cntCnt with number of columns */
|
|
colCnt = numColsA;
|
|
|
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
|
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
|
|
/* Perform the multiply-accumulates */
|
|
sum += (q63_t) *pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Convert result from 2.62 to 1.31 format and store in destination buffer */
|
|
*px++ = (q31_t) (sum >> 31);
|
|
|
|
/* Decrement column loop counter */
|
|
col--;
|
|
|
|
/* Update pointer pIn2 to point to starting address of next column */
|
|
pIn2 = pInB + (numColsB - col);
|
|
|
|
} while (col > 0U);
|
|
|
|
/* Update pointer pInA to point to starting address of next row */
|
|
i = i + numColsB;
|
|
pInA = pInA + numColsA;
|
|
|
|
/* Decrement row loop counter */
|
|
row--;
|
|
|
|
} while (row > 0U);
|
|
|
|
/* Set status as ARM_MATH_SUCCESS */
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
#endif /* defined(ARM_MATH_MVEI) */
|
|
|
|
/**
|
|
@} end of MatrixMult group
|
|
*/
|