You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/SVMFunctions/arm_svm_linear_predict_f16.c

315 lines
8.4 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_linear_predict_f16.c
* Description: SVM Linear Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
#include <limits.h>
#include <math.h>
/**
* @addtogroup linearsvm
* @{
*/
/**
* @brief SVM linear prediction
* @param[in] S Pointer to an instance of the linear SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
void arm_svm_linear_predict_f16(
const arm_svm_linear_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float16_t *pSupport = S->supportVectors;
const float16_t *pSrcA = pSupport;
const float16_t *pInA0;
const float16_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float16_t *pDualCoef = S->dualCoefficients;
_Float16 sum = S->intercept;
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4)
{
const float16_t *pInA2, *pInA3;
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f16x8_t vecIn, acc0, acc1, acc2, acc3;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
acc1 = vdupq_n_f16(0.0f);
acc2 = vdupq_n_f16(0.0f);
acc3 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 8;
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 8;
acc3 = vfmaq(acc3, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA2Vec, p0);
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA3Vec, p0);
acc3 = vfmaq(acc3, vecIn, vecA);
}
/*
* Sum the partial parts
*/
acc0 = vmulq_n_f16(acc0,*pDualCoef++);
acc0 = vfmaq_n_f16(acc0,acc1,*pDualCoef++);
acc0 = vfmaq_n_f16(acc0,acc2,*pDualCoef++);
acc0 = vfmaq_n_f16(acc0,acc3,*pDualCoef++);
sum += (_Float16)vecAddAcrossF16Mve(acc0);
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parallel
*/
if (row >= 2) {
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f16x8_t vecIn, acc0, acc1;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
acc1 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 8;
acc1 = vfmaq(acc1, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrhq_z_f16(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
}
/*
* Sum the partial parts
*/
acc0 = vmulq_n_f16(acc0,*pDualCoef++);
acc0 = vfmaq_n_f16(acc0,acc1,*pDualCoef++);
sum += (_Float16)vecAddAcrossF16Mve(acc0);
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f16x8_t vecIn, acc0;
float16_t const *pSrcA0Vec, *pInVec;
float16_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f16(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 3;
while (blkCnt > 0U) {
f16x8_t vecA;
vecIn = vld1q(pInVec);
pInVec += 8;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vfmaq(acc0, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 7;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecA;
vecIn = vldrhq_z_f16(pInVec, p0);
vecA = vldrhq_z_f16(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
}
/*
* Sum the partial parts
*/
sum += (_Float16)*pDualCoef++ * (_Float16)vecAddAcrossF16Mve(acc0);
}
*pResult = S->classes[STEP(sum)];
}
#else
void arm_svm_linear_predict_f16(
const arm_svm_linear_instance_f16 *S,
const float16_t * in,
int32_t * pResult)
{
_Float16 sum=S->intercept;
_Float16 dot=0;
uint32_t i,j;
const float16_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(j=0; j < S->vectorDimension; j++)
{
dot = (_Float16)dot + (_Float16)in[j]* (_Float16)*pSupport++;
}
sum += (_Float16)S->dualCoefficients[i] * (_Float16)dot;
}
*pResult=S->classes[STEP(sum)];
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of linearsvm group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */