You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/SVMFunctions/arm_svm_polynomial_predict_...

491 lines
14 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_polynomial_predict_f32.c
* Description: SVM Polynomial Classifier
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/svm_functions.h"
#include <limits.h>
#include <math.h>
#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_vec_math.h"
#endif
/**
* @addtogroup polysvm
* @{
*/
/**
* @brief SVM polynomial prediction
* @param[in] S Pointer to an instance of the polynomial SVM structure.
* @param[in] in Pointer to input vector
* @param[out] pResult Decision value
* @return none.
*
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
#include "arm_vec_math.h"
void arm_svm_polynomial_predict_f32(
const arm_svm_polynomial_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
/* inlined Matrix x Vector function interleaved with dot prod */
uint32_t numRows = S->nbOfSupportVectors;
uint32_t numCols = S->vectorDimension;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSrcA = pSupport;
const float32_t *pInA0;
const float32_t *pInA1;
uint32_t row;
uint32_t blkCnt; /* loop counters */
const float32_t *pDualCoef = S->dualCoefficients;
float32_t sum = S->intercept;
f32x4_t vSum = vdupq_n_f32(0.0f);
row = numRows;
/*
* compute 4 rows in parrallel
*/
while (row >= 4) {
const float32_t *pInA2, *pInA3;
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec, *pInVec;
f32x4_t vecIn, acc0, acc1, acc2, acc3;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 4 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
pInA2 = pInA1 + numCols;
pInA3 = pInA2 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
acc2 = vdupq_n_f32(0.0f);
acc3 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
pSrcA2Vec = pInA2;
pSrcA3Vec = pInA3;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vld1q(pSrcA2Vec);
pSrcA2Vec += 4;
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vld1q(pSrcA3Vec);
pSrcA3Vec += 4;
acc3 = vfmaq(acc3, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA2Vec, p0);
acc2 = vfmaq(acc2, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA3Vec, p0);
acc3 = vfmaq(acc3, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc1), vtmp, 1);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc2), vtmp, 2);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc3), vtmp, 3);
vSum = vfmaq_f32(vSum, vld1q(pDualCoef),
arm_vec_exponent_f32
(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0), S->degree));
pDualCoef += 4;
pSrcA += numCols * 4;
/*
* Decrement the row loop counter
*/
row -= 4;
}
/*
* compute 2 rows in parrallel
*/
if (row >= 2) {
float32_t const *pSrcA0Vec, *pSrcA1Vec, *pInVec;
f32x4_t vecIn, acc0, acc1;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to 2 consecutive MatrixA rows
*/
pInA0 = pSrcA;
pInA1 = pInA0 + numCols;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
acc1 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
pSrcA1Vec = pInA1;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vld1q(pSrcA1Vec);
pSrcA1Vec += 4;
acc1 = vfmaq(acc1, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
vecA = vldrwq_z_f32(pSrcA1Vec, p0);
acc1 = vfmaq(acc1, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc1), vtmp, 1);
vSum = vfmaq_m_f32(vSum, vld1q(pDualCoef),
arm_vec_exponent_f32
(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0), S->degree),
vctp32q(2));
pDualCoef += 2;
pSrcA += numCols * 2;
row -= 2;
}
if (row >= 1) {
f32x4_t vecIn, acc0;
float32_t const *pSrcA0Vec, *pInVec;
float32_t const *pSrcVecPtr = in;
/*
* Initialize the pointers to last MatrixA row
*/
pInA0 = pSrcA;
/*
* Initialize the vector pointer
*/
pInVec = pSrcVecPtr;
/*
* reset accumulators
*/
acc0 = vdupq_n_f32(0.0f);
pSrcA0Vec = pInA0;
blkCnt = numCols >> 2;
while (blkCnt > 0U) {
f32x4_t vecA;
vecIn = vld1q(pInVec);
pInVec += 4;
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 4;
acc0 = vfmaq(acc0, vecIn, vecA);
blkCnt--;
}
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = numCols & 3;
if (blkCnt > 0U) {
mve_pred16_t p0 = vctp32q(blkCnt);
f32x4_t vecA;
vecIn = vldrwq_z_f32(pInVec, p0);
vecA = vldrwq_z_f32(pSrcA0Vec, p0);
acc0 = vfmaq(acc0, vecIn, vecA);
}
/*
* Sum the partial parts
*/
f32x4_t vtmp = vuninitializedq_f32();
vtmp = vsetq_lane(vecAddAcrossF32Mve(acc0), vtmp, 0);
vSum = vfmaq_m_f32(vSum, vld1q(pDualCoef),
arm_vec_exponent_f32
(vaddq_n_f32(vmulq_n_f32(vtmp, S->gamma), S->coef0), S->degree),
vctp32q(1));
}
sum += vecAddAcrossF32Mve(vSum);
*pResult = S->classes[STEP(sum)];
}
#else
#if defined(ARM_MATH_NEON)
void arm_svm_polynomial_predict_f32(
const arm_svm_polynomial_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum = S->intercept;
float32_t dot;
float32x4_t dotV;
float32x4_t accuma,accumb,accumc,accumd,accum;
float32x2_t accum2;
float32x4_t vec1;
float32x4_t coef0 = vdupq_n_f32(S->coef0);
float32x4_t vec2,vec2a,vec2b,vec2c,vec2d;
uint32_t blkCnt;
uint32_t vectorBlkCnt;
const float32_t *pIn = in;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSupporta = S->supportVectors;
const float32_t *pSupportb;
const float32_t *pSupportc;
const float32_t *pSupportd;
pSupportb = pSupporta + S->vectorDimension;
pSupportc = pSupportb + S->vectorDimension;
pSupportd = pSupportc + S->vectorDimension;
const float32_t *pDualCoefs = S->dualCoefficients;
vectorBlkCnt = S->nbOfSupportVectors >> 2;
while (vectorBlkCnt > 0U)
{
accuma = vdupq_n_f32(0);
accumb = vdupq_n_f32(0);
accumc = vdupq_n_f32(0);
accumd = vdupq_n_f32(0);
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2a = vld1q_f32(pSupporta);
vec2b = vld1q_f32(pSupportb);
vec2c = vld1q_f32(pSupportc);
vec2d = vld1q_f32(pSupportd);
pIn += 4;
pSupporta += 4;
pSupportb += 4;
pSupportc += 4;
pSupportd += 4;
accuma = vmlaq_f32(accuma, vec1,vec2a);
accumb = vmlaq_f32(accumb, vec1,vec2b);
accumc = vmlaq_f32(accumc, vec1,vec2c);
accumd = vmlaq_f32(accumd, vec1,vec2d);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accuma),vget_high_f32(accuma));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,0);
accum2 = vpadd_f32(vget_low_f32(accumb),vget_high_f32(accumb));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,1);
accum2 = vpadd_f32(vget_low_f32(accumc),vget_high_f32(accumc));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,2);
accum2 = vpadd_f32(vget_low_f32(accumd),vget_high_f32(accumd));
dotV = vsetq_lane_f32(vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1),dotV,3);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,0) + *pIn * *pSupporta++, dotV,0);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,1) + *pIn * *pSupportb++, dotV,1);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,2) + *pIn * *pSupportc++, dotV,2);
dotV = vsetq_lane_f32(vgetq_lane_f32(dotV,3) + *pIn * *pSupportd++, dotV,3);
pIn++;
blkCnt -- ;
}
vec1 = vld1q_f32(pDualCoefs);
pDualCoefs += 4;
// To vectorize later
dotV = vmulq_n_f32(dotV, S->gamma);
dotV = vaddq_f32(dotV, coef0);
dotV = arm_vec_exponent_f32(dotV,S->degree);
accum = vmulq_f32(vec1,dotV);
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
sum += vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
pSupporta += 3*S->vectorDimension;
pSupportb += 3*S->vectorDimension;
pSupportc += 3*S->vectorDimension;
pSupportd += 3*S->vectorDimension;
vectorBlkCnt -- ;
}
pSupport = pSupporta;
vectorBlkCnt = S->nbOfSupportVectors & 3;
while (vectorBlkCnt > 0U)
{
accum = vdupq_n_f32(0);
dot = 0.0f;
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2 = vld1q_f32(pSupport);
pIn += 4;
pSupport += 4;
accum = vmlaq_f32(accum, vec1,vec2);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
dot = vget_lane_f32(accum2, 0) + vget_lane_f32(accum2, 1);
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dot = dot + *pIn++ * *pSupport++;
blkCnt -- ;
}
sum += *pDualCoefs++ * arm_exponent_f32(S->gamma * dot + S->coef0, S->degree);
vectorBlkCnt -- ;
}
*pResult=S->classes[STEP(sum)];
}
#else
void arm_svm_polynomial_predict_f32(
const arm_svm_polynomial_instance_f32 *S,
const float32_t * in,
int32_t * pResult)
{
float32_t sum=S->intercept;
float32_t dot=0;
uint32_t i,j;
const float32_t *pSupport = S->supportVectors;
for(i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(j=0; j < S->vectorDimension; j++)
{
dot = dot + in[j]* *pSupport++;
}
sum += S->dualCoefficients[i] * arm_exponent_f32(S->gamma * dot + S->coef0, S->degree);
}
*pResult=S->classes[STEP(sum)];
}
#endif
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
* @} end of polysvm group
*/