You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/ComplexMathFunctions/arm_cmplx_mult_cmplx_f16.c

217 lines
5.8 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_cmplx_f16.c
* Description: Floating-point complex-by-complex multiplication
*
* $Date: 18. March 2019
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/complex_math_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
/**
@ingroup groupCmplxMath
*/
/**
@defgroup CmplxByCmplxMult Complex-by-Complex Multiplication
Multiplies a complex vector by another complex vector and generates a complex result.
The data in the complex arrays is stored in an interleaved fashion
(real, imag, real, imag, ...).
The parameter <code>numSamples</code> represents the number of complex
samples processed. The complex arrays have a total of <code>2*numSamples</code>
real values.
The underlying algorithm is used:
<pre>
for (n = 0; n < numSamples; n++) {
pDst[(2*n)+0] = pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
pDst[(2*n)+1] = pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
}
</pre>
There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
@addtogroup CmplxByCmplxMult
@{
*/
/**
@brief Floating-point complex-by-complex multiplication.
@param[in] pSrcA points to first input vector
@param[in] pSrcB points to second input vector
@param[out] pDst points to output vector
@param[in] numSamples number of samples in each vector
@return none
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
void arm_cmplx_mult_cmplx_f16(
const float16_t * pSrcA,
const float16_t * pSrcB,
float16_t * pDst,
uint32_t numSamples)
{
int32_t blkCnt; /* loop counters */
int32_t blockSize = numSamples;
f16x8_t vecA;
f16x8_t vecB;
f16x8_t vecDst;
blkCnt = blockSize * CMPLX_DIM;
blkCnt = blkCnt >> 3;
while (blkCnt > 0)
{
vecA = vldrhq_f16(pSrcA);
vecB = vldrhq_f16(pSrcB);
/* C[2 * i] = A[2 * i] * B[2 * i] - A[2 * i + 1] * B[2 * i + 1]. */
vecDst = vcmulq(vecA, vecB);
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i]. */
vecDst = vcmlaq_rot90(vecDst, vecA, vecB);
vstrhq_f16(pDst, vecDst);
blkCnt--;
pSrcA += 8;
pSrcB += 8;
pDst += 8;
}
_Float16 a, b, c, d; /* Temporary variables to store real and imaginary values */
/* Tail */
blkCnt = (blockSize & 7) >> 1;
while (blkCnt > 0)
{
/* C[2 * i ] = A[2 * i] * B[2 * i ] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i ]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store result in destination buffer. */
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
/* Decrement loop counter */
blkCnt--;
}
}
#else
void arm_cmplx_mult_cmplx_f16(
const float16_t * pSrcA,
const float16_t * pSrcB,
float16_t * pDst,
uint32_t numSamples)
{
uint32_t blkCnt; /* Loop counter */
_Float16 a, b, c, d; /* Temporary variables to store real and imaginary values */
#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = numSamples >> 2U;
while (blkCnt > 0U)
{
/* C[2 * i ] = A[2 * i] * B[2 * i ] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i ]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store result in destination buffer. */
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = numSamples % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U)
{
/* C[2 * i ] = A[2 * i] * B[2 * i ] - A[2 * i + 1] * B[2 * i + 1]. */
/* C[2 * i + 1] = A[2 * i] * B[2 * i + 1] + A[2 * i + 1] * B[2 * i ]. */
a = *pSrcA++;
b = *pSrcA++;
c = *pSrcB++;
d = *pSrcB++;
/* store result in destination buffer. */
*pDst++ = (a * c) - (b * d);
*pDst++ = (a * d) + (b * c);
/* Decrement loop counter */
blkCnt--;
}
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of CmplxByCmplxMult group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */