You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/ComplexMathFunctions/arm_cmplx_dot_prod_f16.c

289 lines
7.5 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cmplx_dot_prod_f16.c
* Description: Floating-point complex dot product
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/complex_math_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
/**
@ingroup groupCmplxMath
*/
/**
@defgroup cmplx_dot_prod Complex Dot Product
Computes the dot product of two complex vectors.
The vectors are multiplied element-by-element and then summed.
The <code>pSrcA</code> points to the first complex input vector and
<code>pSrcB</code> points to the second complex input vector.
<code>numSamples</code> specifies the number of complex samples
and the data in each array is stored in an interleaved fashion
(real, imag, real, imag, ...).
Each array has a total of <code>2*numSamples</code> values.
The underlying algorithm is used:
<pre>
realResult = 0;
imagResult = 0;
for (n = 0; n < numSamples; n++) {
realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
}
</pre>
There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
@addtogroup cmplx_dot_prod
@{
*/
/**
@brief Floating-point complex dot product.
@param[in] pSrcA points to the first input vector
@param[in] pSrcB points to the second input vector
@param[in] numSamples number of samples in each vector
@param[out] realResult real part of the result returned here
@param[out] imagResult imaginary part of the result returned here
@return none
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
void arm_cmplx_dot_prod_f16(
const float16_t * pSrcA,
const float16_t * pSrcB,
uint32_t numSamples,
float16_t * realResult,
float16_t * imagResult)
{
int32_t blkCnt;
float16_t real_sum, imag_sum;
f16x8_t vecSrcA, vecSrcB;
f16x8_t vec_acc = vdupq_n_f16(0.0f16);
f16x8_t vecSrcC, vecSrcD;
blkCnt = (numSamples >> 3);
blkCnt -= 1;
if (blkCnt > 0) {
/* should give more freedom to generate stall free code */
vecSrcA = vld1q( pSrcA);
vecSrcB = vld1q( pSrcB);
pSrcA += 8;
pSrcB += 8;
while (blkCnt > 0) {
vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
vecSrcC = vld1q(pSrcA);
pSrcA += 8;
vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB);
vecSrcD = vld1q(pSrcB);
pSrcB += 8;
vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD);
vecSrcA = vld1q(pSrcA);
pSrcA += 8;
vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD);
vecSrcB = vld1q(pSrcB);
pSrcB += 8;
/*
* Decrement the blockSize loop counter
*/
blkCnt--;
}
/* process last elements out of the loop avoid the armclang breaking the SW pipeline */
vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
vecSrcC = vld1q(pSrcA);
vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB);
vecSrcD = vld1q(pSrcB);
vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD);
vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD);
/*
* tail
*/
blkCnt = CMPLX_DIM * (numSamples & 7);
while (blkCnt > 0) {
mve_pred16_t p = vctp16q(blkCnt);
pSrcA += 8;
pSrcB += 8;
vecSrcA = vldrhq_z_f16(pSrcA, p);
vecSrcB = vldrhq_z_f16(pSrcB, p);
vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p);
vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p);
blkCnt -= 8;
}
} else {
/* small vector */
blkCnt = numSamples * CMPLX_DIM;
vec_acc = vdupq_n_f16(0.0f16);
do {
mve_pred16_t p = vctp16q(blkCnt);
vecSrcA = vldrhq_z_f16(pSrcA, p);
vecSrcB = vldrhq_z_f16(pSrcB, p);
vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p);
vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p);
/*
* Decrement the blkCnt loop counter
* Advance vector source and destination pointers
*/
pSrcA += 8;
pSrcB += 8;
blkCnt -= 8;
}
while (blkCnt > 0);
}
/* Sum the partial parts */
mve_cmplx_sum_intra_r_i_f16(vec_acc, real_sum, imag_sum);
/*
* Store the real and imaginary results in the destination buffers
*/
*realResult = real_sum;
*imagResult = imag_sum;
}
#else
void arm_cmplx_dot_prod_f16(
const float16_t * pSrcA,
const float16_t * pSrcB,
uint32_t numSamples,
float16_t * realResult,
float16_t * imagResult)
{
uint32_t blkCnt; /* Loop counter */
_Float16 real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result variables */
_Float16 a0,b0,c0,d0;
#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = numSamples >> 2U;
while (blkCnt > 0U)
{
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += a0 * c0;
imag_sum += a0 * d0;
real_sum -= b0 * d0;
imag_sum += b0 * c0;
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += a0 * c0;
imag_sum += a0 * d0;
real_sum -= b0 * d0;
imag_sum += b0 * c0;
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += a0 * c0;
imag_sum += a0 * d0;
real_sum -= b0 * d0;
imag_sum += b0 * c0;
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += a0 * c0;
imag_sum += a0 * d0;
real_sum -= b0 * d0;
imag_sum += b0 * c0;
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = numSamples % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (blkCnt > 0U)
{
a0 = *pSrcA++;
b0 = *pSrcA++;
c0 = *pSrcB++;
d0 = *pSrcB++;
real_sum += a0 * c0;
imag_sum += a0 * d0;
real_sum -= b0 * d0;
imag_sum += b0 * c0;
/* Decrement loop counter */
blkCnt--;
}
/* Store real and imaginary result in destination buffer. */
*realResult = real_sum;
*imagResult = imag_sum;
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of cmplx_dot_prod group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */