You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/ComplexMathFunctions/arm_cmplx_mult_real_f32.c

225 lines
6.0 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_cmplx_mult_real_f32.c
* Description: Floating-point complex by real multiplication
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/complex_math_functions.h"
/**
@ingroup groupCmplxMath
*/
/**
@defgroup CmplxByRealMult Complex-by-Real Multiplication
Multiplies a complex vector by a real vector and generates a complex result.
The data in the complex arrays is stored in an interleaved fashion
(real, imag, real, imag, ...).
The parameter <code>numSamples</code> represents the number of complex
samples processed. The complex arrays have a total of <code>2*numSamples</code>
real values while the real array has a total of <code>numSamples</code>
real values.
The underlying algorithm is used:
<pre>
for (n = 0; n < numSamples; n++) {
pCmplxDst[(2*n)+0] = pSrcCmplx[(2*n)+0] * pSrcReal[n];
pCmplxDst[(2*n)+1] = pSrcCmplx[(2*n)+1] * pSrcReal[n];
}
</pre>
There are separate functions for floating-point, Q15, and Q31 data types.
*/
/**
@addtogroup CmplxByRealMult
@{
*/
/**
@brief Floating-point complex-by-real multiplication.
@param[in] pSrcCmplx points to complex input vector
@param[in] pSrcReal points to real input vector
@param[out] pCmplxDst points to complex output vector
@param[in] numSamples number of samples in each vector
@return none
*/
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
void arm_cmplx_mult_real_f32(
const float32_t * pSrcCmplx,
const float32_t * pSrcReal,
float32_t * pCmplxDst,
uint32_t numSamples)
{
static const uint32_t stride_cmplx_x_real_32[4] = { 0, 0, 1, 1 };
uint32_t blockSizeC = numSamples * CMPLX_DIM; /* loop counters */
uint32_t blkCnt;
f32x4_t rVec;
f32x4_t cmplxVec;
f32x4_t dstVec;
uint32x4_t strideVec;
float32_t in;
/* stride vector for pairs of real generation */
strideVec = vld1q(stride_cmplx_x_real_32);
/* Compute 4 complex outputs at a time */
blkCnt = blockSizeC >> 2;
while (blkCnt > 0U)
{
cmplxVec = vld1q(pSrcCmplx);
rVec = vldrwq_gather_shifted_offset_f32(pSrcReal, strideVec);
dstVec = vmulq(cmplxVec, rVec);
vst1q(pCmplxDst, dstVec);
pSrcReal += 2;
pSrcCmplx += 4;
pCmplxDst += 4;
blkCnt--;
}
blkCnt = (blockSizeC & 3) >> 1;
while (blkCnt > 0U)
{
/* C[2 * i ] = A[2 * i ] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store result in destination buffer. */
*pCmplxDst++ = *pSrcCmplx++ * in;
*pCmplxDst++ = *pSrcCmplx++ * in;
/* Decrement loop counter */
blkCnt--;
}
}
#else
void arm_cmplx_mult_real_f32(
const float32_t * pSrcCmplx,
const float32_t * pSrcReal,
float32_t * pCmplxDst,
uint32_t numSamples)
{
uint32_t blkCnt; /* Loop counter */
float32_t in; /* Temporary variable */
#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
float32x4_t r;
float32x4x2_t ab,outCplx;
/* Compute 4 outputs at a time */
blkCnt = numSamples >> 2U;
while (blkCnt > 0U)
{
ab = vld2q_f32(pSrcCmplx); // load & separate real/imag pSrcA (de-interleave 2)
r = vld1q_f32(pSrcReal); // load & separate real/imag pSrcB
/* Increment pointers */
pSrcCmplx += 8;
pSrcReal += 4;
outCplx.val[0] = vmulq_f32(ab.val[0], r);
outCplx.val[1] = vmulq_f32(ab.val[1], r);
vst2q_f32(pCmplxDst, outCplx);
pCmplxDst += 8;
blkCnt--;
}
/* Tail */
blkCnt = numSamples & 3;
#else
#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
/* Loop unrolling: Compute 4 outputs at a time */
blkCnt = numSamples >> 2U;
while (blkCnt > 0U)
{
/* C[2 * i ] = A[2 * i ] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store result in destination buffer. */
*pCmplxDst++ = *pSrcCmplx++ * in;
*pCmplxDst++ = *pSrcCmplx++ * in;
in = *pSrcReal++;
*pCmplxDst++ = *pSrcCmplx++ * in;
*pCmplxDst++ = *pSrcCmplx++ * in;
in = *pSrcReal++;
*pCmplxDst++ = *pSrcCmplx++ * in;
*pCmplxDst++ = *pSrcCmplx++ * in;
in = *pSrcReal++;
*pCmplxDst++ = *pSrcCmplx++* in;
*pCmplxDst++ = *pSrcCmplx++ * in;
/* Decrement loop counter */
blkCnt--;
}
/* Loop unrolling: Compute remaining outputs */
blkCnt = numSamples % 0x4U;
#else
/* Initialize blkCnt with number of samples */
blkCnt = numSamples;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
#endif /* #if defined(ARM_MATH_NEON) */
while (blkCnt > 0U)
{
/* C[2 * i ] = A[2 * i ] * B[i]. */
/* C[2 * i + 1] = A[2 * i + 1] * B[i]. */
in = *pSrcReal++;
/* store result in destination buffer. */
*pCmplxDst++ = *pSrcCmplx++ * in;
*pCmplxDst++ = *pSrcCmplx++ * in;
/* Decrement loop counter */
blkCnt--;
}
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of CmplxByRealMult group
*/