You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
213 lines
5.7 KiB
C
213 lines
5.7 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_naive_gaussian_bayes_predict_f16
|
|
* Description: Naive Gaussian Bayesian Estimator
|
|
*
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/bayes_functions_f16.h"
|
|
|
|
#if defined(ARM_FLOAT16_SUPPORTED)
|
|
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
|
|
#define PI_F 3.1415926535897932384626433832795f16
|
|
|
|
/**
|
|
* @addtogroup groupBayes
|
|
* @{
|
|
*/
|
|
|
|
/**
|
|
* @brief Naive Gaussian Bayesian Estimator
|
|
*
|
|
* @param[in] *S points to a naive bayes instance structure
|
|
* @param[in] *in points to the elements of the input vector.
|
|
* @param[in] *pBuffer points to a buffer of length numberOfClasses
|
|
* @return The predicted class
|
|
*
|
|
* @par If the number of classes is big, MVE version will consume lot of
|
|
* stack since the log prior are computed on the stack.
|
|
*
|
|
*/
|
|
|
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#include "arm_helium_utils.h"
|
|
#include "arm_vec_math_f16.h"
|
|
|
|
uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S,
|
|
const float16_t * in,
|
|
float16_t *pBuffer)
|
|
{
|
|
uint32_t nbClass;
|
|
const float16_t *pTheta = S->theta;
|
|
const float16_t *pSigma = S->sigma;
|
|
float16_t *buffer = pBuffer;
|
|
const float16_t *pIn = in;
|
|
float16_t result;
|
|
f16x8_t vsigma;
|
|
_Float16 tmp;
|
|
f16x8_t vacc1, vacc2;
|
|
uint32_t index;
|
|
float16_t logclassPriors[S->numberOfClasses];
|
|
float16_t *pLogPrior = logclassPriors;
|
|
|
|
arm_vlog_f16((float16_t *) S->classPriors, logclassPriors, S->numberOfClasses);
|
|
|
|
pTheta = S->theta;
|
|
pSigma = S->sigma;
|
|
|
|
for (nbClass = 0; nbClass < S->numberOfClasses; nbClass++) {
|
|
pIn = in;
|
|
|
|
vacc1 = vdupq_n_f16(0.0f16);
|
|
vacc2 = vdupq_n_f16(0.0f16);
|
|
|
|
uint32_t blkCnt =S->vectorDimension >> 3;
|
|
while (blkCnt > 0U) {
|
|
f16x8_t vinvSigma, vtmp;
|
|
|
|
vsigma = vaddq_n_f16(vld1q(pSigma), S->epsilon);
|
|
vacc1 = vaddq(vacc1, vlogq_f16(vmulq_n_f16(vsigma, 2.0f16 * (_Float16)PI)));
|
|
|
|
vinvSigma = vrecip_medprec_f16(vsigma);
|
|
|
|
vtmp = vsubq(vld1q(pIn), vld1q(pTheta));
|
|
/* squaring */
|
|
vtmp = vmulq(vtmp, vtmp);
|
|
|
|
vacc2 = vfmaq(vacc2, vtmp, vinvSigma);
|
|
|
|
pIn += 8;
|
|
pTheta += 8;
|
|
pSigma += 8;
|
|
blkCnt--;
|
|
}
|
|
|
|
blkCnt = S->vectorDimension & 7;
|
|
if (blkCnt > 0U) {
|
|
mve_pred16_t p0 = vctp16q(blkCnt);
|
|
f16x8_t vinvSigma, vtmp;
|
|
|
|
vsigma = vaddq_n_f16(vld1q(pSigma), S->epsilon);
|
|
vacc1 =
|
|
vaddq_m_f16(vacc1, vacc1, vlogq_f16(vmulq_n_f16(vsigma, 2.0f16 * (_Float16)PI)), p0);
|
|
|
|
vinvSigma = vrecip_medprec_f16(vsigma);
|
|
|
|
vtmp = vsubq(vld1q(pIn), vld1q(pTheta));
|
|
/* squaring */
|
|
vtmp = vmulq(vtmp, vtmp);
|
|
|
|
vacc2 = vfmaq_m_f16(vacc2, vtmp, vinvSigma, p0);
|
|
|
|
pTheta += blkCnt;
|
|
pSigma += blkCnt;
|
|
}
|
|
|
|
tmp = -0.5f16 * (_Float16)vecAddAcrossF16Mve(vacc1);
|
|
tmp -= 0.5f16 * (_Float16)vecAddAcrossF16Mve(vacc2);
|
|
|
|
*buffer = tmp + *pLogPrior++;
|
|
buffer++;
|
|
}
|
|
|
|
arm_max_f16(pBuffer, S->numberOfClasses, &result, &index);
|
|
|
|
return (index);
|
|
}
|
|
|
|
#else
|
|
|
|
/**
|
|
* @brief Naive Gaussian Bayesian Estimator
|
|
*
|
|
* @param[in] *S points to a naive bayes instance structure
|
|
* @param[in] *in points to the elements of the input vector.
|
|
* @param[in] *pBuffer points to a buffer of length numberOfClasses
|
|
* @return The predicted class
|
|
*
|
|
*/
|
|
uint32_t arm_gaussian_naive_bayes_predict_f16(const arm_gaussian_naive_bayes_instance_f16 *S,
|
|
const float16_t * in,
|
|
float16_t *pBuffer)
|
|
{
|
|
uint32_t nbClass;
|
|
uint32_t nbDim;
|
|
const float16_t *pPrior = S->classPriors;
|
|
const float16_t *pTheta = S->theta;
|
|
const float16_t *pSigma = S->sigma;
|
|
float16_t *buffer = pBuffer;
|
|
const float16_t *pIn=in;
|
|
float16_t result;
|
|
_Float16 sigma;
|
|
_Float16 tmp;
|
|
_Float16 acc1,acc2;
|
|
uint32_t index;
|
|
|
|
pTheta=S->theta;
|
|
pSigma=S->sigma;
|
|
|
|
for(nbClass = 0; nbClass < S->numberOfClasses; nbClass++)
|
|
{
|
|
|
|
|
|
pIn = in;
|
|
|
|
tmp = 0.0f16;
|
|
acc1 = 0.0f16;
|
|
acc2 = 0.0f16;
|
|
for(nbDim = 0; nbDim < S->vectorDimension; nbDim++)
|
|
{
|
|
sigma = *pSigma + S->epsilon;
|
|
acc1 += logf(2.0f16 * (_Float16)PI_F * sigma);
|
|
acc2 += (*pIn - *pTheta) * (*pIn - *pTheta) / sigma;
|
|
|
|
pIn++;
|
|
pTheta++;
|
|
pSigma++;
|
|
}
|
|
|
|
tmp = -0.5f16 * acc1;
|
|
tmp -= 0.5f16 * acc2;
|
|
|
|
|
|
*buffer = tmp + logf(*pPrior++);
|
|
buffer++;
|
|
}
|
|
|
|
arm_max_f16(pBuffer,S->numberOfClasses,&result,&index);
|
|
|
|
return(index);
|
|
}
|
|
|
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
|
|
|
/**
|
|
* @} end of groupBayes group
|
|
*/
|
|
|
|
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
|
|
|