You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
235 lines
5.3 KiB
C
235 lines
5.3 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_mat_solve_lower_triangular_f16.c
|
|
* Description: Solve linear system LT X = A with LT lower triangular matrix
|
|
*
|
|
* $Date: 23 April 2021
|
|
* $Revision: V1.9.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/matrix_functions_f16.h"
|
|
|
|
#if defined(ARM_FLOAT16_SUPPORTED)
|
|
/**
|
|
@ingroup groupMatrix
|
|
*/
|
|
|
|
|
|
/**
|
|
@addtogroup MatrixInv
|
|
@{
|
|
*/
|
|
|
|
|
|
/**
|
|
* @brief Solve LT . X = A where LT is a lower triangular matrix
|
|
* @param[in] lt The lower triangular matrix
|
|
* @param[in] a The matrix a
|
|
* @param[out] dst The solution X of LT . X = A
|
|
* @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
|
|
*/
|
|
|
|
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#include "arm_helium_utils.h"
|
|
|
|
arm_status arm_mat_solve_lower_triangular_f16(
|
|
const arm_matrix_instance_f16 * lt,
|
|
const arm_matrix_instance_f16 * a,
|
|
arm_matrix_instance_f16 * dst)
|
|
{
|
|
arm_status status; /* status of matrix inverse */
|
|
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((lt->numRows != lt->numCols) ||
|
|
(lt->numRows != a->numRows) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* a1 b1 c1 x1 = a1
|
|
b2 c2 x2 a2
|
|
c3 x3 a3
|
|
|
|
x3 = a3 / c3
|
|
x2 = (a2 - c2 x3) / b2
|
|
|
|
*/
|
|
int i,j,k,n,cols;
|
|
|
|
n = dst->numRows;
|
|
cols = dst->numCols;
|
|
|
|
float16_t *pX = dst->pData;
|
|
float16_t *pLT = lt->pData;
|
|
float16_t *pA = a->pData;
|
|
|
|
float16_t *lt_row;
|
|
float16_t *a_col;
|
|
|
|
_Float16 invLT;
|
|
|
|
f16x8_t vecA;
|
|
f16x8_t vecX;
|
|
|
|
for(i=0; i < n ; i++)
|
|
{
|
|
|
|
for(j=0; j+7 < cols; j += 8)
|
|
{
|
|
vecA = vld1q_f16(&pA[i * cols + j]);
|
|
|
|
for(k=0; k < i; k++)
|
|
{
|
|
vecX = vld1q_f16(&pX[cols*k+j]);
|
|
vecA = vfmsq(vecA,vdupq_n_f16(pLT[n*i + k]),vecX);
|
|
}
|
|
|
|
if ((_Float16)pLT[n*i + i]==0.0f16)
|
|
{
|
|
return(ARM_MATH_SINGULAR);
|
|
}
|
|
|
|
invLT = 1.0f16 / (_Float16)pLT[n*i + i];
|
|
vecA = vmulq(vecA,vdupq_n_f16(invLT));
|
|
vst1q(&pX[i*cols+j],vecA);
|
|
|
|
}
|
|
|
|
for(; j < cols; j ++)
|
|
{
|
|
a_col = &pA[j];
|
|
lt_row = &pLT[n*i];
|
|
|
|
_Float16 tmp=a_col[i * cols];
|
|
|
|
for(k=0; k < i; k++)
|
|
{
|
|
tmp -= (_Float16)lt_row[k] * (_Float16)pX[cols*k+j];
|
|
}
|
|
|
|
if ((_Float16)lt_row[i]==0.0f16)
|
|
{
|
|
return(ARM_MATH_SINGULAR);
|
|
}
|
|
tmp = tmp / (_Float16)lt_row[i];
|
|
pX[i*cols+j] = tmp;
|
|
}
|
|
|
|
}
|
|
status = ARM_MATH_SUCCESS;
|
|
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
|
|
#else
|
|
arm_status arm_mat_solve_lower_triangular_f16(
|
|
const arm_matrix_instance_f16 * lt,
|
|
const arm_matrix_instance_f16 * a,
|
|
arm_matrix_instance_f16 * dst)
|
|
{
|
|
arm_status status; /* status of matrix inverse */
|
|
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((lt->numRows != lt->numCols) ||
|
|
(lt->numRows != a->numRows) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* a1 b1 c1 x1 = a1
|
|
b2 c2 x2 a2
|
|
c3 x3 a3
|
|
|
|
x3 = a3 / c3
|
|
x2 = (a2 - c2 x3) / b2
|
|
|
|
*/
|
|
int i,j,k,n,cols;
|
|
|
|
n = dst->numRows;
|
|
cols = dst->numCols;
|
|
|
|
float16_t *pX = dst->pData;
|
|
float16_t *pLT = lt->pData;
|
|
float16_t *pA = a->pData;
|
|
|
|
float16_t *lt_row;
|
|
float16_t *a_col;
|
|
|
|
for(j=0; j < cols; j ++)
|
|
{
|
|
a_col = &pA[j];
|
|
|
|
for(i=0; i < n ; i++)
|
|
{
|
|
lt_row = &pLT[n*i];
|
|
|
|
float16_t tmp=a_col[i * cols];
|
|
|
|
for(k=0; k < i; k++)
|
|
{
|
|
tmp -= (_Float16)lt_row[k] * (_Float16)pX[cols*k+j];
|
|
}
|
|
|
|
if ((_Float16)lt_row[i]==0.0f16)
|
|
{
|
|
return(ARM_MATH_SINGULAR);
|
|
}
|
|
tmp = (_Float16)tmp / (_Float16)lt_row[i];
|
|
pX[i*cols+j] = tmp;
|
|
}
|
|
|
|
}
|
|
status = ARM_MATH_SUCCESS;
|
|
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
|
|
|
/**
|
|
@} end of MatrixInv group
|
|
*/
|
|
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */
|