You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/MatrixFunctions/arm_mat_solve_lower_triangu...

235 lines
5.3 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_solve_lower_triangular_f16.c
* Description: Solve linear system LT X = A with LT lower triangular matrix
*
* $Date: 23 April 2021
* $Revision: V1.9.0
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
/**
@ingroup groupMatrix
*/
/**
@addtogroup MatrixInv
@{
*/
/**
* @brief Solve LT . X = A where LT is a lower triangular matrix
* @param[in] lt The lower triangular matrix
* @param[in] a The matrix a
* @param[out] dst The solution X of LT . X = A
* @return The function returns ARM_MATH_SINGULAR, if the system can't be solved.
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE)
#include "arm_helium_utils.h"
arm_status arm_mat_solve_lower_triangular_f16(
const arm_matrix_instance_f16 * lt,
const arm_matrix_instance_f16 * a,
arm_matrix_instance_f16 * dst)
{
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((lt->numRows != lt->numCols) ||
(lt->numRows != a->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* a1 b1 c1 x1 = a1
b2 c2 x2 a2
c3 x3 a3
x3 = a3 / c3
x2 = (a2 - c2 x3) / b2
*/
int i,j,k,n,cols;
n = dst->numRows;
cols = dst->numCols;
float16_t *pX = dst->pData;
float16_t *pLT = lt->pData;
float16_t *pA = a->pData;
float16_t *lt_row;
float16_t *a_col;
_Float16 invLT;
f16x8_t vecA;
f16x8_t vecX;
for(i=0; i < n ; i++)
{
for(j=0; j+7 < cols; j += 8)
{
vecA = vld1q_f16(&pA[i * cols + j]);
for(k=0; k < i; k++)
{
vecX = vld1q_f16(&pX[cols*k+j]);
vecA = vfmsq(vecA,vdupq_n_f16(pLT[n*i + k]),vecX);
}
if ((_Float16)pLT[n*i + i]==0.0f16)
{
return(ARM_MATH_SINGULAR);
}
invLT = 1.0f16 / (_Float16)pLT[n*i + i];
vecA = vmulq(vecA,vdupq_n_f16(invLT));
vst1q(&pX[i*cols+j],vecA);
}
for(; j < cols; j ++)
{
a_col = &pA[j];
lt_row = &pLT[n*i];
_Float16 tmp=a_col[i * cols];
for(k=0; k < i; k++)
{
tmp -= (_Float16)lt_row[k] * (_Float16)pX[cols*k+j];
}
if ((_Float16)lt_row[i]==0.0f16)
{
return(ARM_MATH_SINGULAR);
}
tmp = tmp / (_Float16)lt_row[i];
pX[i*cols+j] = tmp;
}
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#else
arm_status arm_mat_solve_lower_triangular_f16(
const arm_matrix_instance_f16 * lt,
const arm_matrix_instance_f16 * a,
arm_matrix_instance_f16 * dst)
{
arm_status status; /* status of matrix inverse */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((lt->numRows != lt->numCols) ||
(lt->numRows != a->numRows) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* a1 b1 c1 x1 = a1
b2 c2 x2 a2
c3 x3 a3
x3 = a3 / c3
x2 = (a2 - c2 x3) / b2
*/
int i,j,k,n,cols;
n = dst->numRows;
cols = dst->numCols;
float16_t *pX = dst->pData;
float16_t *pLT = lt->pData;
float16_t *pA = a->pData;
float16_t *lt_row;
float16_t *a_col;
for(j=0; j < cols; j ++)
{
a_col = &pA[j];
for(i=0; i < n ; i++)
{
lt_row = &pLT[n*i];
float16_t tmp=a_col[i * cols];
for(k=0; k < i; k++)
{
tmp -= (_Float16)lt_row[k] * (_Float16)pX[cols*k+j];
}
if ((_Float16)lt_row[i]==0.0f16)
{
return(ARM_MATH_SINGULAR);
}
tmp = (_Float16)tmp / (_Float16)lt_row[i];
pX[i*cols+j] = tmp;
}
}
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of MatrixInv group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */