You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/SVMFunctions/arm_svm_polynomial_predict_...

231 lines
5.9 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_svm_polynomial_predict_f32.c
* Description: SVM Polynomial Classifier
*
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
#include <limits.h>
#include <math.h>
/**
* @addtogroup groupSVM
* @{
*/
/**
* @brief SVM polynomial prediction
* @param[in] S points to an instance of the polynomial SVM structure.
* @param[in] in pointer to input vector
* @param[out] pResult decision value
* @return none.
*
*/
#if defined(ARM_MATH_NEON)
void arm_svm_polynomial_predict_f32(
const arm_svm_polynomial_instance_f32 *S,
const float32_t * in,
int * pResult)
{
float32_t sum = S->intercept;
float32_t dot;
float32x4_t dotV;
float32x4_t accuma,accumb,accumc,accumd,accum;
float32x2_t accum2;
float32x4_t vec1;
float32x4_t coef0 = vdupq_n_f32(S->coef0);
float32x4_t vec2,vec2a,vec2b,vec2c,vec2d;
uint32_t blkCnt;
uint32_t vectorBlkCnt;
const float32_t *pIn = in;
const float32_t *pSupport = S->supportVectors;
const float32_t *pSupporta = S->supportVectors;
const float32_t *pSupportb;
const float32_t *pSupportc;
const float32_t *pSupportd;
pSupportb = pSupporta + S->vectorDimension;
pSupportc = pSupportb + S->vectorDimension;
pSupportd = pSupportc + S->vectorDimension;
const float32_t *pDualCoefs = S->dualCoefficients;
vectorBlkCnt = S->nbOfSupportVectors >> 2;
while (vectorBlkCnt > 0U)
{
accuma = vdupq_n_f32(0);
accumb = vdupq_n_f32(0);
accumc = vdupq_n_f32(0);
accumd = vdupq_n_f32(0);
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2a = vld1q_f32(pSupporta);
vec2b = vld1q_f32(pSupportb);
vec2c = vld1q_f32(pSupportc);
vec2d = vld1q_f32(pSupportd);
pIn += 4;
pSupporta += 4;
pSupportb += 4;
pSupportc += 4;
pSupportd += 4;
accuma = vmlaq_f32(accuma, vec1,vec2a);
accumb = vmlaq_f32(accumb, vec1,vec2b);
accumc = vmlaq_f32(accumc, vec1,vec2c);
accumd = vmlaq_f32(accumd, vec1,vec2d);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accuma),vget_high_f32(accuma));
dotV[0] = accum2[0] + accum2[1];
accum2 = vpadd_f32(vget_low_f32(accumb),vget_high_f32(accumb));
dotV[1] = accum2[0] + accum2[1];
accum2 = vpadd_f32(vget_low_f32(accumc),vget_high_f32(accumc));
dotV[2] = accum2[0] + accum2[1];
accum2 = vpadd_f32(vget_low_f32(accumd),vget_high_f32(accumd));
dotV[3] = accum2[0] + accum2[1];
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dotV[0] = dotV[0] + *pIn * *pSupporta++;
dotV[1] = dotV[1] + *pIn * *pSupportb++;
dotV[2] = dotV[2] + *pIn * *pSupportc++;
dotV[3] = dotV[3] + *pIn * *pSupportd++;
pIn++;
blkCnt -- ;
}
vec1 = vld1q_f32(pDualCoefs);
pDualCoefs += 4;
// To vectorize later
dotV = vmulq_n_f32(dotV, S->gamma);
dotV = vaddq_f32(dotV, coef0);
dotV = arm_vec_exponent_f32(dotV,S->degree);
accum = vmulq_f32(vec1,dotV);
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
sum += accum2[0] + accum2[1];
pSupporta += 3*S->vectorDimension;
pSupportb += 3*S->vectorDimension;
pSupportc += 3*S->vectorDimension;
pSupportd += 3*S->vectorDimension;
vectorBlkCnt -- ;
}
pSupport = pSupporta;
vectorBlkCnt = S->nbOfSupportVectors & 3;
while (vectorBlkCnt > 0U)
{
accum = vdupq_n_f32(0);
dot = 0.0;
pIn = in;
blkCnt = S->vectorDimension >> 2;
while (blkCnt > 0U)
{
vec1 = vld1q_f32(pIn);
vec2 = vld1q_f32(pSupport);
pIn += 4;
pSupport += 4;
accum = vmlaq_f32(accum, vec1,vec2);
blkCnt -- ;
}
accum2 = vpadd_f32(vget_low_f32(accum),vget_high_f32(accum));
dot = accum2[0] + accum2[1];
blkCnt = S->vectorDimension & 3;
while (blkCnt > 0U)
{
dot = dot + *pIn++ * *pSupport++;
blkCnt -- ;
}
sum += *pDualCoefs++ * arm_exponent_f32(S->gamma * dot + S->coef0, S->degree);
vectorBlkCnt -- ;
}
*pResult=S->classes[STEP(sum)];
}
#else
void arm_svm_polynomial_predict_f32(
const arm_svm_polynomial_instance_f32 *S,
const float32_t * in,
int * pResult)
{
float32_t sum=S->intercept;
float32_t dot=0;
const float32_t *pSupport = S->supportVectors;
for(int i=0; i < S->nbOfSupportVectors; i++)
{
dot=0;
for(int j=0; j < S->vectorDimension; j++)
{
dot = dot + in[j]* *pSupport++;
}
sum += S->dualCoefficients[i] * arm_exponent_f32(S->gamma * dot + S->coef0, S->degree);
}
*pResult=S->classes[STEP(sum)];
}
#endif
/**
* @} end of groupSVM group
*/