You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/v1.14.3/group__MatrixChol.html

420 lines
25 KiB
HTML

<!-- HTML header for doxygen 1.9.2-->
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "https://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=11"/>
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<title>CMSIS-DSP: Cholesky and LDLT decompositions</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="jquery.js"></script>
<script type="text/javascript" src="dynsections.js"></script>
<script type="text/javascript" src="footer.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
<script type="text/javascript" src="navtreedata.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&amp;dn=expat.txt MIT */
$(document).ready(function() { init_search(); });
/* @license-end */
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js", "TeX/AMSmath.js", "TeX/AMSsymbols.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
</script>
<script type="text/javascript" async="async" src="https://cdn.jsdelivr.net/npm/mathjax@2/MathJax.js"></script>
<link href="$extra_stylesheet" rel="stylesheet" type="text/css" />
<link href="extra_stylesheet.css" rel="stylesheet" type="text/css"/>
<link href="version.css" rel="stylesheet" type="text/css" />
<script type="text/javascript" src="../version.js"></script>
</head>
<body>
<div id="top"><!-- do not remove this div, it is closed by doxygen! -->
<div id="titlearea">
<table cellspacing="0" cellpadding="0">
<tbody>
<tr style="height: 55px;">
<td id="projectlogo" style="padding: 1.5em;"><img alt="Logo" src="cmsis_logo_white_small.png"/></td>
<td style="padding-left: 1em; padding-bottom: 1em;padding-top: 1em;">
<div id="projectname">CMSIS-DSP
&#160;<span id="projectnumber"><script type="text/javascript">
<!--
writeHeader.call(this);
writeVersionDropdown(this);
//-->
</script>
</span>
</div>
<div id="projectbrief">CMSIS DSP Software Library</div>
</td>
<!--END !PROJECT_NAME-->
</tr>
</tbody>
</table>
</div>
<!-- end header part -->
<!-- Generated by Doxygen 1.9.2 -->
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&amp;dn=expat.txt MIT */
var searchBox = new SearchBox("searchBox", "search",'Search','.html');
/* @license-end */
</script>
<div id="navrow1" class="tabs">
<ul class="tablist">
<li><a href="index.html"><span>Main&#160;Page</span></a></li>
<li><a href="pages.html"><span>Usage&#160;and&#160;Description</span></a></li>
<li class="current"><a href="modules.html"><span>&#160;API&#160;Reference</span></a></li>
<li>
<div id="MSearchBox" class="MSearchBoxInactive">
<span class="left">
<img id="MSearchSelect" src="search/mag_sel.svg"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
alt=""/>
<input type="text" id="MSearchField" value="Search" accesskey="S"
onfocus="searchBox.OnSearchFieldFocus(true)"
onblur="searchBox.OnSearchFieldFocus(false)"
onkeyup="searchBox.OnSearchFieldChange(event)"/>
</span><span class="right">
<a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.svg" alt=""/></a>
</span>
</div>
</li>
</ul>
</div>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
<div id="nav-tree-contents">
<div id="nav-sync" class="sync"></div>
</div>
</div>
<div id="splitbar" style="-moz-user-select:none;"
class="ui-resizable-handle">
</div>
</div>
<script type="text/javascript">
/* @license magnet:?xt=urn:btih:d3d9a9a6595521f9666a5e94cc830dab83b65699&amp;dn=expat.txt MIT */
$(document).ready(function(){initNavTree('group__MatrixChol.html',''); initResizable(); });
/* @license-end */
</script>
<div id="doc-content">
<!-- window showing the filter options -->
<div id="MSearchSelectWindow"
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
</div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
<iframe src="javascript:void(0)" frameborder="0"
name="MSearchResults" id="MSearchResults">
</iframe>
</div>
<div class="header">
<div class="summary">
<a href="#func-members">Functions</a> </div>
<div class="headertitle"><div class="title">Cholesky and LDLT decompositions<div class="ingroups"><a class="el" href="group__groupMatrix.html">Matrix Functions</a></div></div></div>
</div><!--header-->
<div class="contents">
<table class="memberdecls">
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a id="func-members" name="func-members"></a>
Functions</h2></td></tr>
<tr class="memitem:gaf94a1d82b0f71856e0eecb87675a5427"><td class="memItemLeft" align="right" valign="top"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__MatrixChol.html#gaf94a1d82b0f71856e0eecb87675a5427">arm_mat_cholesky_f16</a> (const <a class="el" href="structarm__matrix__instance__f16.html">arm_matrix_instance_f16</a> *pSrc, <a class="el" href="structarm__matrix__instance__f16.html">arm_matrix_instance_f16</a> *pDst)</td></tr>
<tr class="memdesc:gaf94a1d82b0f71856e0eecb87675a5427"><td class="mdescLeft">&#160;</td><td class="mdescRight">Floating-point Cholesky decomposition of positive-definite matrix. <a href="group__MatrixChol.html#gaf94a1d82b0f71856e0eecb87675a5427">More...</a><br /></td></tr>
<tr class="separator:gaf94a1d82b0f71856e0eecb87675a5427"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:ga93fb3e349876dfa93658a73114341290"><td class="memItemLeft" align="right" valign="top"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__MatrixChol.html#ga93fb3e349876dfa93658a73114341290">arm_mat_cholesky_f32</a> (const <a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *pSrc, <a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *pDst)</td></tr>
<tr class="memdesc:ga93fb3e349876dfa93658a73114341290"><td class="mdescLeft">&#160;</td><td class="mdescRight">Floating-point Cholesky decomposition of positive-definite matrix. <a href="group__MatrixChol.html#ga93fb3e349876dfa93658a73114341290">More...</a><br /></td></tr>
<tr class="separator:ga93fb3e349876dfa93658a73114341290"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:gadea9a5bd7f46d2dc604799b653fd8cdf"><td class="memItemLeft" align="right" valign="top"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__MatrixChol.html#gadea9a5bd7f46d2dc604799b653fd8cdf">arm_mat_cholesky_f64</a> (const <a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *pSrc, <a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *pDst)</td></tr>
<tr class="memdesc:gadea9a5bd7f46d2dc604799b653fd8cdf"><td class="mdescLeft">&#160;</td><td class="mdescRight">Floating-point Cholesky decomposition of positive-definite matrix. <a href="group__MatrixChol.html#gadea9a5bd7f46d2dc604799b653fd8cdf">More...</a><br /></td></tr>
<tr class="separator:gadea9a5bd7f46d2dc604799b653fd8cdf"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:ga1d834976c8687e4925e5a061d65668c4"><td class="memItemLeft" align="right" valign="top"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__MatrixChol.html#ga1d834976c8687e4925e5a061d65668c4">arm_mat_ldlt_f32</a> (const <a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *pSrc, <a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *pl, <a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *pd, uint16_t *pp)</td></tr>
<tr class="memdesc:ga1d834976c8687e4925e5a061d65668c4"><td class="mdescLeft">&#160;</td><td class="mdescRight">Floating-point LDL^t decomposition of positive semi-definite matrix. <a href="group__MatrixChol.html#ga1d834976c8687e4925e5a061d65668c4">More...</a><br /></td></tr>
<tr class="separator:ga1d834976c8687e4925e5a061d65668c4"><td class="memSeparator" colspan="2">&#160;</td></tr>
<tr class="memitem:gabc7f0d81b9d1e4899ca47d13775bbbc1"><td class="memItemLeft" align="right" valign="top"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a>&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="group__MatrixChol.html#gabc7f0d81b9d1e4899ca47d13775bbbc1">arm_mat_ldlt_f64</a> (const <a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *pSrc, <a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *pl, <a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *pd, uint16_t *pp)</td></tr>
<tr class="memdesc:gabc7f0d81b9d1e4899ca47d13775bbbc1"><td class="mdescLeft">&#160;</td><td class="mdescRight">Floating-point LDL^t decomposition of positive semi-definite matrix. <a href="group__MatrixChol.html#gabc7f0d81b9d1e4899ca47d13775bbbc1">More...</a><br /></td></tr>
<tr class="separator:gabc7f0d81b9d1e4899ca47d13775bbbc1"><td class="memSeparator" colspan="2">&#160;</td></tr>
</table>
<a name="details" id="details"></a><h2 class="groupheader">Description</h2>
<p >Computes the Cholesky or LL^t decomposition of a matrix.</p>
<p >If the input matrix does not have a decomposition, then the algorithm terminates and returns error status ARM_MATH_DECOMPOSITION_FAILURE. </p>
<h2 class="groupheader">Function Documentation</h2>
<a id="gaf94a1d82b0f71856e0eecb87675a5427" name="gaf94a1d82b0f71856e0eecb87675a5427"></a>
<h2 class="memtitle"><span class="permalink"><a href="#gaf94a1d82b0f71856e0eecb87675a5427">&#9670;&nbsp;</a></span>arm_mat_cholesky_f16()</h2>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a> arm_mat_cholesky_f16 </td>
<td>(</td>
<td class="paramtype">const <a class="el" href="structarm__matrix__instance__f16.html">arm_matrix_instance_f16</a> *&#160;</td>
<td class="paramname"><em>pSrc</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structarm__matrix__instance__f16.html">arm_matrix_instance_f16</a> *&#160;</td>
<td class="paramname"><em>pDst</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div><div class="memdoc">
<p >Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.</p>
<dl class="params"><dt>Parameters</dt><dd>
<table class="params">
<tr><td class="paramdir">[in]</td><td class="paramname">pSrc</td><td>points to the instance of the input floating-point matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pDst</td><td>points to the instance of the output floating-point matrix structure. </td></tr>
</table>
</dd>
</dl>
<dl class="section return"><dt>Returns</dt><dd>The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. </dd>
<dd>
execution status<ul>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a9f8b2a10bd827fb4600e77d455902eb0">ARM_MATH_SUCCESS</a> : Operation successful</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a7071b92f1f6bc3c5c312a237ea91105b">ARM_MATH_SIZE_MISMATCH</a> : Matrix size check failed</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6af176673ca62a9fc570f0366808903a31">ARM_MATH_DECOMPOSITION_FAILURE</a> : Input matrix cannot be decomposed </li>
</ul>
</dd></dl>
<dl class="section user"><dt></dt><dd>If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. The decomposition of A is returning a lower triangular matrix U such that A = L L^t </dd></dl>
</div>
</div>
<a id="ga93fb3e349876dfa93658a73114341290" name="ga93fb3e349876dfa93658a73114341290"></a>
<h2 class="memtitle"><span class="permalink"><a href="#ga93fb3e349876dfa93658a73114341290">&#9670;&nbsp;</a></span>arm_mat_cholesky_f32()</h2>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a> arm_mat_cholesky_f32 </td>
<td>(</td>
<td class="paramtype">const <a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *&#160;</td>
<td class="paramname"><em>pSrc</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *&#160;</td>
<td class="paramname"><em>pDst</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div><div class="memdoc">
<p >Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.</p>
<dl class="params"><dt>Parameters</dt><dd>
<table class="params">
<tr><td class="paramdir">[in]</td><td class="paramname">pSrc</td><td>points to the instance of the input floating-point matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pDst</td><td>points to the instance of the output floating-point matrix structure. </td></tr>
</table>
</dd>
</dl>
<dl class="section return"><dt>Returns</dt><dd>The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. </dd>
<dd>
execution status<ul>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a9f8b2a10bd827fb4600e77d455902eb0">ARM_MATH_SUCCESS</a> : Operation successful</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a7071b92f1f6bc3c5c312a237ea91105b">ARM_MATH_SIZE_MISMATCH</a> : Matrix size check failed</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6af176673ca62a9fc570f0366808903a31">ARM_MATH_DECOMPOSITION_FAILURE</a> : Input matrix cannot be decomposed </li>
</ul>
</dd></dl>
<dl class="section user"><dt></dt><dd>If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. The decomposition of A is returning a lower triangular matrix L such that A = L L^t </dd></dl>
</div>
</div>
<a id="gadea9a5bd7f46d2dc604799b653fd8cdf" name="gadea9a5bd7f46d2dc604799b653fd8cdf"></a>
<h2 class="memtitle"><span class="permalink"><a href="#gadea9a5bd7f46d2dc604799b653fd8cdf">&#9670;&nbsp;</a></span>arm_mat_cholesky_f64()</h2>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a> arm_mat_cholesky_f64 </td>
<td>(</td>
<td class="paramtype">const <a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *&#160;</td>
<td class="paramname"><em>pSrc</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *&#160;</td>
<td class="paramname"><em>pDst</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div><div class="memdoc">
<p >Floating-point Cholesky decomposition of Symmetric Positive Definite Matrix.</p>
<dl class="params"><dt>Parameters</dt><dd>
<table class="params">
<tr><td class="paramdir">[in]</td><td class="paramname">pSrc</td><td>points to the instance of the input floating-point matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pDst</td><td>points to the instance of the output floating-point matrix structure. </td></tr>
</table>
</dd>
</dl>
<dl class="section return"><dt>Returns</dt><dd>The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. </dd>
<dd>
execution status<ul>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a9f8b2a10bd827fb4600e77d455902eb0">ARM_MATH_SUCCESS</a> : Operation successful</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a7071b92f1f6bc3c5c312a237ea91105b">ARM_MATH_SIZE_MISMATCH</a> : Matrix size check failed</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6af176673ca62a9fc570f0366808903a31">ARM_MATH_DECOMPOSITION_FAILURE</a> : Input matrix cannot be decomposed </li>
</ul>
</dd></dl>
<dl class="section user"><dt></dt><dd>If the matrix is ill conditioned or only semi-definite, then it is better using the LDL^t decomposition. The decomposition of A is returning a lower triangular matrix L such that A = L L^t </dd></dl>
</div>
</div>
<a id="ga1d834976c8687e4925e5a061d65668c4" name="ga1d834976c8687e4925e5a061d65668c4"></a>
<h2 class="memtitle"><span class="permalink"><a href="#ga1d834976c8687e4925e5a061d65668c4">&#9670;&nbsp;</a></span>arm_mat_ldlt_f32()</h2>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a> arm_mat_ldlt_f32 </td>
<td>(</td>
<td class="paramtype">const <a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *&#160;</td>
<td class="paramname"><em>pSrc</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *&#160;</td>
<td class="paramname"><em>pl</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structarm__matrix__instance__f32.html">arm_matrix_instance_f32</a> *&#160;</td>
<td class="paramname"><em>pd</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">uint16_t *&#160;</td>
<td class="paramname"><em>pp</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div><div class="memdoc">
<p >Floating-point LDL decomposition of Symmetric Positive Semi-Definite Matrix.</p>
<dl class="params"><dt>Parameters</dt><dd>
<table class="params">
<tr><td class="paramdir">[in]</td><td class="paramname">pSrc</td><td>points to the instance of the input floating-point matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pl</td><td>points to the instance of the output floating-point triangular matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pd</td><td>points to the instance of the output floating-point diagonal matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pp</td><td>points to the instance of the output floating-point permutation vector. </td></tr>
</table>
</dd>
</dl>
<dl class="section return"><dt>Returns</dt><dd>The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. </dd>
<dd>
execution status<ul>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a9f8b2a10bd827fb4600e77d455902eb0">ARM_MATH_SUCCESS</a> : Operation successful</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a7071b92f1f6bc3c5c312a237ea91105b">ARM_MATH_SIZE_MISMATCH</a> : Matrix size check failed</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6af176673ca62a9fc570f0366808903a31">ARM_MATH_DECOMPOSITION_FAILURE</a> : Input matrix cannot be decomposed </li>
</ul>
</dd></dl>
<dl class="section user"><dt></dt><dd>Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t. </dd></dl>
</div>
</div>
<a id="gabc7f0d81b9d1e4899ca47d13775bbbc1" name="gabc7f0d81b9d1e4899ca47d13775bbbc1"></a>
<h2 class="memtitle"><span class="permalink"><a href="#gabc7f0d81b9d1e4899ca47d13775bbbc1">&#9670;&nbsp;</a></span>arm_mat_ldlt_f64()</h2>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname"><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6">arm_status</a> arm_mat_ldlt_f64 </td>
<td>(</td>
<td class="paramtype">const <a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *&#160;</td>
<td class="paramname"><em>pSrc</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *&#160;</td>
<td class="paramname"><em>pl</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype"><a class="el" href="structarm__matrix__instance__f64.html">arm_matrix_instance_f64</a> *&#160;</td>
<td class="paramname"><em>pd</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
<td class="paramtype">uint16_t *&#160;</td>
<td class="paramname"><em>pp</em>&#160;</td>
</tr>
<tr>
<td></td>
<td>)</td>
<td></td><td></td>
</tr>
</table>
</div><div class="memdoc">
<p >Floating-point LDL decomposition of Symmetric Positive Semi-Definite Matrix.</p>
<dl class="params"><dt>Parameters</dt><dd>
<table class="params">
<tr><td class="paramdir">[in]</td><td class="paramname">pSrc</td><td>points to the instance of the input floating-point matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pl</td><td>points to the instance of the output floating-point triangular matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pd</td><td>points to the instance of the output floating-point diagonal matrix structure. </td></tr>
<tr><td class="paramdir">[out]</td><td class="paramname">pp</td><td>points to the instance of the output floating-point permutation vector. </td></tr>
</table>
</dd>
</dl>
<dl class="section return"><dt>Returns</dt><dd>The function returns ARM_MATH_SIZE_MISMATCH, if the dimensions do not match. </dd>
<dd>
execution status<ul>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a9f8b2a10bd827fb4600e77d455902eb0">ARM_MATH_SUCCESS</a> : Operation successful</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6a7071b92f1f6bc3c5c312a237ea91105b">ARM_MATH_SIZE_MISMATCH</a> : Matrix size check failed</li>
<li><a class="el" href="arm__math__types_8h.html#a5e459c6409dfcd2927bb8a57491d7cf6af176673ca62a9fc570f0366808903a31">ARM_MATH_DECOMPOSITION_FAILURE</a> : Input matrix cannot be decomposed </li>
</ul>
</dd></dl>
<dl class="section user"><dt></dt><dd>Computes the LDL^t decomposition of a matrix A such that P A P^t = L D L^t. </dd></dl>
</div>
</div>
</div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="footer">
<script type="text/javascript">
<!--
writeFooter.call(this);
//-->
</script>
</li>
</ul>
</div>
</body>
</html>