You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
341 lines
9.2 KiB
C
341 lines
9.2 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_cmplx_dot_prod_f32.c
|
|
* Description: Floating-point complex dot product
|
|
*
|
|
* $Date: 18. March 2019
|
|
* $Revision: V1.6.0
|
|
*
|
|
* Target Processor: Cortex-M cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/complex_math_functions.h"
|
|
|
|
/**
|
|
@ingroup groupCmplxMath
|
|
*/
|
|
|
|
/**
|
|
@defgroup cmplx_dot_prod Complex Dot Product
|
|
|
|
Computes the dot product of two complex vectors.
|
|
The vectors are multiplied element-by-element and then summed.
|
|
|
|
The <code>pSrcA</code> points to the first complex input vector and
|
|
<code>pSrcB</code> points to the second complex input vector.
|
|
<code>numSamples</code> specifies the number of complex samples
|
|
and the data in each array is stored in an interleaved fashion
|
|
(real, imag, real, imag, ...).
|
|
Each array has a total of <code>2*numSamples</code> values.
|
|
|
|
The underlying algorithm is used:
|
|
|
|
<pre>
|
|
realResult = 0;
|
|
imagResult = 0;
|
|
for (n = 0; n < numSamples; n++) {
|
|
realResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+0] - pSrcA[(2*n)+1] * pSrcB[(2*n)+1];
|
|
imagResult += pSrcA[(2*n)+0] * pSrcB[(2*n)+1] + pSrcA[(2*n)+1] * pSrcB[(2*n)+0];
|
|
}
|
|
</pre>
|
|
|
|
There are separate functions for floating-point, Q15, and Q31 data types.
|
|
*/
|
|
|
|
/**
|
|
@addtogroup cmplx_dot_prod
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
@brief Floating-point complex dot product.
|
|
@param[in] pSrcA points to the first input vector
|
|
@param[in] pSrcB points to the second input vector
|
|
@param[in] numSamples number of samples in each vector
|
|
@param[out] realResult real part of the result returned here
|
|
@param[out] imagResult imaginary part of the result returned here
|
|
@return none
|
|
*/
|
|
|
|
#if defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
void arm_cmplx_dot_prod_f32(
|
|
const float32_t * pSrcA,
|
|
const float32_t * pSrcB,
|
|
uint32_t numSamples,
|
|
float32_t * realResult,
|
|
float32_t * imagResult)
|
|
{
|
|
int32_t blkCnt;
|
|
float32_t real_sum, imag_sum;
|
|
f32x4_t vecSrcA, vecSrcB;
|
|
f32x4_t vec_acc = vdupq_n_f32(0.0f);
|
|
f32x4_t vecSrcC, vecSrcD;
|
|
|
|
blkCnt = numSamples >> 2;
|
|
blkCnt -= 1;
|
|
if (blkCnt > 0) {
|
|
/* should give more freedom to generate stall free code */
|
|
vecSrcA = vld1q(pSrcA);
|
|
vecSrcB = vld1q(pSrcB);
|
|
pSrcA += 4;
|
|
pSrcB += 4;
|
|
|
|
while (blkCnt > 0) {
|
|
vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
|
|
vecSrcC = vld1q(pSrcA);
|
|
pSrcA += 4;
|
|
|
|
vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB);
|
|
vecSrcD = vld1q(pSrcB);
|
|
pSrcB += 4;
|
|
|
|
vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD);
|
|
vecSrcA = vld1q(pSrcA);
|
|
pSrcA += 4;
|
|
|
|
vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD);
|
|
vecSrcB = vld1q(pSrcB);
|
|
pSrcB += 4;
|
|
/*
|
|
* Decrement the blockSize loop counter
|
|
*/
|
|
blkCnt--;
|
|
}
|
|
|
|
/* process last elements out of the loop avoid the armclang breaking the SW pipeline */
|
|
vec_acc = vcmlaq(vec_acc, vecSrcA, vecSrcB);
|
|
vecSrcC = vld1q(pSrcA);
|
|
|
|
vec_acc = vcmlaq_rot90(vec_acc, vecSrcA, vecSrcB);
|
|
vecSrcD = vld1q(pSrcB);
|
|
|
|
vec_acc = vcmlaq(vec_acc, vecSrcC, vecSrcD);
|
|
vec_acc = vcmlaq_rot90(vec_acc, vecSrcC, vecSrcD);
|
|
|
|
/*
|
|
* tail
|
|
*/
|
|
blkCnt = CMPLX_DIM * (numSamples & 3);
|
|
while (blkCnt > 0) {
|
|
mve_pred16_t p = vctp32q(blkCnt);
|
|
pSrcA += 4;
|
|
pSrcB += 4;
|
|
vecSrcA = vldrwq_z_f32(pSrcA, p);
|
|
vecSrcB = vldrwq_z_f32(pSrcB, p);
|
|
vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p);
|
|
vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p);
|
|
blkCnt -= 4;
|
|
}
|
|
} else {
|
|
/* small vector */
|
|
blkCnt = numSamples * CMPLX_DIM;
|
|
vec_acc = vdupq_n_f32(0.0f);
|
|
|
|
do {
|
|
mve_pred16_t p = vctp32q(blkCnt);
|
|
|
|
vecSrcA = vldrwq_z_f32(pSrcA, p);
|
|
vecSrcB = vldrwq_z_f32(pSrcB, p);
|
|
|
|
vec_acc = vcmlaq_m(vec_acc, vecSrcA, vecSrcB, p);
|
|
vec_acc = vcmlaq_rot90_m(vec_acc, vecSrcA, vecSrcB, p);
|
|
|
|
/*
|
|
* Decrement the blkCnt loop counter
|
|
* Advance vector source and destination pointers
|
|
*/
|
|
pSrcA += 4;
|
|
pSrcB += 4;
|
|
blkCnt -= 4;
|
|
}
|
|
while (blkCnt > 0);
|
|
}
|
|
|
|
real_sum = vgetq_lane(vec_acc, 0) + vgetq_lane(vec_acc, 2);
|
|
imag_sum = vgetq_lane(vec_acc, 1) + vgetq_lane(vec_acc, 3);
|
|
|
|
/*
|
|
* Store the real and imaginary results in the destination buffers
|
|
*/
|
|
*realResult = real_sum;
|
|
*imagResult = imag_sum;
|
|
}
|
|
|
|
#else
|
|
void arm_cmplx_dot_prod_f32(
|
|
const float32_t * pSrcA,
|
|
const float32_t * pSrcB,
|
|
uint32_t numSamples,
|
|
float32_t * realResult,
|
|
float32_t * imagResult)
|
|
{
|
|
uint32_t blkCnt; /* Loop counter */
|
|
float32_t real_sum = 0.0f, imag_sum = 0.0f; /* Temporary result variables */
|
|
float32_t a0,b0,c0,d0;
|
|
|
|
#if defined(ARM_MATH_NEON) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
float32x4x2_t vec1,vec2,vec3,vec4;
|
|
float32x4_t accR,accI;
|
|
float32x2_t accum = vdup_n_f32(0);
|
|
|
|
accR = vdupq_n_f32(0.0f);
|
|
accI = vdupq_n_f32(0.0f);
|
|
|
|
/* Loop unrolling: Compute 8 outputs at a time */
|
|
blkCnt = numSamples >> 3U;
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
/* C = (A[0]+jA[1])*(B[0]+jB[1]) + ... */
|
|
/* Calculate dot product and then store the result in a temporary buffer. */
|
|
|
|
vec1 = vld2q_f32(pSrcA);
|
|
vec2 = vld2q_f32(pSrcB);
|
|
|
|
/* Increment pointers */
|
|
pSrcA += 8;
|
|
pSrcB += 8;
|
|
|
|
/* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */
|
|
accR = vmlaq_f32(accR,vec1.val[0],vec2.val[0]);
|
|
accR = vmlsq_f32(accR,vec1.val[1],vec2.val[1]);
|
|
|
|
/* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */
|
|
accI = vmlaq_f32(accI,vec1.val[1],vec2.val[0]);
|
|
accI = vmlaq_f32(accI,vec1.val[0],vec2.val[1]);
|
|
|
|
vec3 = vld2q_f32(pSrcA);
|
|
vec4 = vld2q_f32(pSrcB);
|
|
|
|
/* Increment pointers */
|
|
pSrcA += 8;
|
|
pSrcB += 8;
|
|
|
|
/* Re{C} = Re{A}*Re{B} - Im{A}*Im{B} */
|
|
accR = vmlaq_f32(accR,vec3.val[0],vec4.val[0]);
|
|
accR = vmlsq_f32(accR,vec3.val[1],vec4.val[1]);
|
|
|
|
/* Im{C} = Re{A}*Im{B} + Im{A}*Re{B} */
|
|
accI = vmlaq_f32(accI,vec3.val[1],vec4.val[0]);
|
|
accI = vmlaq_f32(accI,vec3.val[0],vec4.val[1]);
|
|
|
|
/* Decrement the loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
accum = vpadd_f32(vget_low_f32(accR), vget_high_f32(accR));
|
|
real_sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
accum = vpadd_f32(vget_low_f32(accI), vget_high_f32(accI));
|
|
imag_sum += vget_lane_f32(accum, 0) + vget_lane_f32(accum, 1);
|
|
|
|
/* Tail */
|
|
blkCnt = numSamples & 0x7;
|
|
|
|
#else
|
|
#if defined (ARM_MATH_LOOPUNROLL) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
/* Loop unrolling: Compute 4 outputs at a time */
|
|
blkCnt = numSamples >> 2U;
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
a0 = *pSrcA++;
|
|
b0 = *pSrcA++;
|
|
c0 = *pSrcB++;
|
|
d0 = *pSrcB++;
|
|
|
|
real_sum += a0 * c0;
|
|
imag_sum += a0 * d0;
|
|
real_sum -= b0 * d0;
|
|
imag_sum += b0 * c0;
|
|
|
|
a0 = *pSrcA++;
|
|
b0 = *pSrcA++;
|
|
c0 = *pSrcB++;
|
|
d0 = *pSrcB++;
|
|
|
|
real_sum += a0 * c0;
|
|
imag_sum += a0 * d0;
|
|
real_sum -= b0 * d0;
|
|
imag_sum += b0 * c0;
|
|
|
|
a0 = *pSrcA++;
|
|
b0 = *pSrcA++;
|
|
c0 = *pSrcB++;
|
|
d0 = *pSrcB++;
|
|
|
|
real_sum += a0 * c0;
|
|
imag_sum += a0 * d0;
|
|
real_sum -= b0 * d0;
|
|
imag_sum += b0 * c0;
|
|
|
|
a0 = *pSrcA++;
|
|
b0 = *pSrcA++;
|
|
c0 = *pSrcB++;
|
|
d0 = *pSrcB++;
|
|
|
|
real_sum += a0 * c0;
|
|
imag_sum += a0 * d0;
|
|
real_sum -= b0 * d0;
|
|
imag_sum += b0 * c0;
|
|
|
|
/* Decrement loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
/* Loop unrolling: Compute remaining outputs */
|
|
blkCnt = numSamples % 0x4U;
|
|
|
|
#else
|
|
|
|
/* Initialize blkCnt with number of samples */
|
|
blkCnt = numSamples;
|
|
|
|
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
|
|
#endif /* #if defined(ARM_MATH_NEON) */
|
|
|
|
while (blkCnt > 0U)
|
|
{
|
|
a0 = *pSrcA++;
|
|
b0 = *pSrcA++;
|
|
c0 = *pSrcB++;
|
|
d0 = *pSrcB++;
|
|
|
|
real_sum += a0 * c0;
|
|
imag_sum += a0 * d0;
|
|
real_sum -= b0 * d0;
|
|
imag_sum += b0 * c0;
|
|
|
|
/* Decrement loop counter */
|
|
blkCnt--;
|
|
}
|
|
|
|
/* Store real and imaginary result in destination buffer. */
|
|
*realResult = real_sum;
|
|
*imagResult = imag_sum;
|
|
}
|
|
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
|
|
|
|
/**
|
|
@} end of cmplx_dot_prod group
|
|
*/
|