You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/MatrixFunctions/arm_mat_cmplx_mult_f16.c

933 lines
28 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_mat_cmplx_mult_f16.c
* Description: Floating-point matrix multiplication
*
* $Date: 18. March 2020
* $Revision: V1.6.0
*
* Target Processor: Cortex-M cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2020 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "dsp/matrix_functions_f16.h"
#if defined(ARM_FLOAT16_SUPPORTED)
/**
@ingroup groupMatrix
*/
/**
@addtogroup CmplxMatrixMult
@{
*/
/**
@brief Floating-point Complex matrix multiplication.
@param[in] pSrcA points to first input complex matrix structure
@param[in] pSrcB points to second input complex matrix structure
@param[out] pDst points to output complex matrix structure
@return execution status
- \ref ARM_MATH_SUCCESS : Operation successful
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
*/
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) && defined(__CMSIS_GCC_H)
#pragma GCC warning "Scalar version of arm_mat_cmplx_mult_f16 built. Helium version has build issues with gcc."
#endif
#if defined(ARM_MATH_MVE_FLOAT16) && !defined(ARM_MATH_AUTOVECTORIZE) && !defined(__CMSIS_GCC_H)
#include "arm_helium_utils.h"
#define DONTCARE 0 /* inactive lane content */
__STATIC_FORCEINLINE arm_status arm_mat_cmplx_mult_f16_2x2_mve(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst)
{
const uint16_t MATRIX_DIM = 2;
float16_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
float16_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float16_t *pOut = pDst->pData; /* output data matrix pointer */
uint16x8_t vecColBOffs0,vecColAOffs0,vecColAOffs1;
float16_t *pInA0 = pInA;
f16x8_t acc0, acc1;
f16x8_t vecB, vecA0, vecA1;
f16x8_t vecTmp;
uint16_t tmp;
static const uint16_t offsetB0[8] = { 0, 1,
MATRIX_DIM * CMPLX_DIM, MATRIX_DIM * CMPLX_DIM + 1,
2, 3,
MATRIX_DIM * CMPLX_DIM + 2 , MATRIX_DIM * CMPLX_DIM + 3,
};
vecColBOffs0 = vldrhq_u16((uint16_t const *) offsetB0);
tmp = 0;
vecColAOffs0 = viwdupq_u16(tmp, 4, 1);
tmp = (CMPLX_DIM * MATRIX_DIM);
vecColAOffs1 = vecColAOffs0 + (uint16_t)(CMPLX_DIM * MATRIX_DIM);
pInB = (float16_t const *)pSrcB->pData;
vecA0 = vldrhq_gather_shifted_offset_f16(pInA0, vecColAOffs0);
vecA1 = vldrhq_gather_shifted_offset_f16(pInA0, vecColAOffs1);
vecB = vldrhq_gather_shifted_offset(pInB, vecColBOffs0);
acc0 = vcmulq(vecA0, vecB);
acc0 = vcmlaq_rot90(acc0, vecA0, vecB);
acc1 = vcmulq(vecA1, vecB);
acc1 = vcmlaq_rot90(acc1, vecA1, vecB);
/*
* Compute
* re0+re1 | im0+im1 | re0+re1 | im0+im1
* re2+re3 | im2+im3 | re2+re3 | im2+im3
*/
vecTmp = (f16x8_t) vrev64q_s32((int32x4_t) acc0);
vecTmp = vaddq(vecTmp, acc0);
*(float32_t *)(&pOut[0 * CMPLX_DIM * MATRIX_DIM]) = ((f32x4_t)vecTmp)[0];
*(float32_t *)(&pOut[0 * CMPLX_DIM * MATRIX_DIM + CMPLX_DIM]) = ((f32x4_t)vecTmp)[2];
vecTmp = (f16x8_t) vrev64q_s32((int32x4_t) acc1);
vecTmp = vaddq(vecTmp, acc1);
*(float32_t *)(&pOut[1 * CMPLX_DIM * MATRIX_DIM]) = ((f32x4_t)vecTmp)[0];
*(float32_t *)(&pOut[1 * CMPLX_DIM * MATRIX_DIM + CMPLX_DIM]) = ((f32x4_t)vecTmp)[2];
/*
* Return to application
*/
return (ARM_MATH_SUCCESS);
}
__STATIC_FORCEINLINE arm_status arm_mat_cmplx_mult_f16_3x3_mve(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst)
{
const uint16_t MATRIX_DIM = 3;
float16_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
float16_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float16_t *pOut = pDst->pData; /* output data matrix pointer */
uint16x8_t vecColBOffs0;
float16_t *pInA0 = pInA;
float16_t *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM;
float16_t *pInA2 = pInA1 + CMPLX_DIM * MATRIX_DIM;
f16x8_t acc0, acc1, acc2;
f16x8_t vecB, vecA0, vecA1, vecA2;
static const uint16_t offsetB0[8] = { 0, 1,
MATRIX_DIM * CMPLX_DIM, MATRIX_DIM * CMPLX_DIM + 1,
2 * MATRIX_DIM * CMPLX_DIM, 2 * MATRIX_DIM * CMPLX_DIM + 1,
DONTCARE, DONTCARE
};
/* enable predication to disable upper half complex vector element */
mve_pred16_t p0 = vctp16q(MATRIX_DIM * CMPLX_DIM);
vecColBOffs0 = vldrhq_u16((uint16_t const *) offsetB0);
pInB = (float16_t const *)pSrcB->pData;
vecA0 = vldrhq_f16(pInA0);
vecA1 = vldrhq_f16(pInA1);
vecA2 = vldrhq_f16(pInA2);
vecB = vldrhq_gather_shifted_offset_z(pInB, vecColBOffs0, p0);
acc0 = vcmulq(vecA0, vecB);
acc0 = vcmlaq_rot90(acc0, vecA0, vecB);
acc1 = vcmulq(vecA1, vecB);
acc1 = vcmlaq_rot90(acc1, vecA1, vecB);
acc2 = vcmulq(vecA2, vecB);
acc2 = vcmlaq_rot90(acc2, vecA2, vecB);
mve_cmplx_sum_intra_vec_f16(acc0, &pOut[0 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc1, &pOut[1 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc2, &pOut[2 * CMPLX_DIM * MATRIX_DIM]);
pOut += CMPLX_DIM;
/*
* move to next B column
*/
pInB = pInB + CMPLX_DIM;
vecB = vldrhq_gather_shifted_offset_z(pInB, vecColBOffs0, p0);
acc0 = vcmulq(vecA0, vecB);
acc0 = vcmlaq_rot90(acc0, vecA0, vecB);
acc1 = vcmulq(vecA1, vecB);
acc1 = vcmlaq_rot90(acc1, vecA1, vecB);
acc2 = vcmulq(vecA2, vecB);
acc2 = vcmlaq_rot90(acc2, vecA2, vecB);
mve_cmplx_sum_intra_vec_f16(acc0, &pOut[0 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc1, &pOut[1 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc2, &pOut[2 * CMPLX_DIM * MATRIX_DIM]);
pOut += CMPLX_DIM;
/*
* move to next B column
*/
pInB = pInB + CMPLX_DIM;
vecB = vldrhq_gather_shifted_offset_z(pInB, vecColBOffs0, p0);
acc0 = vcmulq(vecA0, vecB);
acc0 = vcmlaq_rot90(acc0, vecA0, vecB);
acc1 = vcmulq(vecA1, vecB);
acc1 = vcmlaq_rot90(acc1, vecA1, vecB);
acc2 = vcmulq(vecA2, vecB);
acc2 = vcmlaq_rot90(acc2, vecA2, vecB);
mve_cmplx_sum_intra_vec_f16(acc0, &pOut[0 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc1, &pOut[1 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc2, &pOut[2 * CMPLX_DIM * MATRIX_DIM]);
/*
* Return to application
*/
return (ARM_MATH_SUCCESS);
}
__STATIC_FORCEINLINE arm_status arm_mat_cmplx_mult_f16_4x4_mve(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst)
{
const uint16_t MATRIX_DIM = 4;
float16_t const *pInB = pSrcB->pData; /* input data matrix pointer B */
float16_t *pInA = pSrcA->pData; /* input data matrix pointer A */
float16_t *pOut = pDst->pData; /* output data matrix pointer */
uint16x8_t vecColBOffs0;
float16_t *pInA0 = pInA;
float16_t *pInA1 = pInA0 + CMPLX_DIM * MATRIX_DIM;
float16_t *pInA2 = pInA1 + CMPLX_DIM * MATRIX_DIM;
float16_t *pInA3 = pInA2 + CMPLX_DIM * MATRIX_DIM;
f16x8_t acc0, acc1, acc2, acc3;
f16x8_t vecB, vecA;
static const uint16_t offsetB0[8] = { 0, 1,
MATRIX_DIM * CMPLX_DIM, MATRIX_DIM * CMPLX_DIM + 1,
2 * MATRIX_DIM * CMPLX_DIM, 2 * MATRIX_DIM * CMPLX_DIM + 1,
3 * MATRIX_DIM * CMPLX_DIM, 3 * MATRIX_DIM * CMPLX_DIM + 1
};
vecColBOffs0 = vldrhq_u16((uint16_t const *) offsetB0);
pInB = (float16_t const *)pSrcB->pData;
vecB = vldrhq_gather_shifted_offset(pInB, vecColBOffs0);
vecA = vldrhq_f16(pInA0);
acc0 = vcmulq(vecA, vecB);
acc0 = vcmlaq_rot90(acc0, vecA, vecB);
vecA = vldrhq_f16(pInA1);
acc1 = vcmulq(vecA, vecB);
acc1 = vcmlaq_rot90(acc1, vecA, vecB);
vecA = vldrhq_f16(pInA2);
acc2 = vcmulq(vecA, vecB);
acc2 = vcmlaq_rot90(acc2, vecA, vecB);
vecA = vldrhq_f16(pInA3);
acc3 = vcmulq(vecA, vecB);
acc3 = vcmlaq_rot90(acc3, vecA, vecB);
mve_cmplx_sum_intra_vec_f16(acc0, &pOut[0 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc1, &pOut[1 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc2, &pOut[2 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc3, &pOut[3 * CMPLX_DIM * MATRIX_DIM]);
pOut += CMPLX_DIM;
/*
* move to next B column
*/
pInB = pInB + CMPLX_DIM;
vecB = vldrhq_gather_shifted_offset(pInB, vecColBOffs0);
vecA = vldrhq_f16(pInA0);
acc0 = vcmulq(vecA, vecB);
acc0 = vcmlaq_rot90(acc0, vecA, vecB);
vecA = vldrhq_f16(pInA1);
acc1 = vcmulq(vecA, vecB);
acc1 = vcmlaq_rot90(acc1, vecA, vecB);
vecA = vldrhq_f16(pInA2);
acc2 = vcmulq(vecA, vecB);
acc2 = vcmlaq_rot90(acc2, vecA, vecB);
vecA = vldrhq_f16(pInA3);
acc3 = vcmulq(vecA, vecB);
acc3 = vcmlaq_rot90(acc3, vecA, vecB);
mve_cmplx_sum_intra_vec_f16(acc0, &pOut[0 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc1, &pOut[1 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc2, &pOut[2 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc3, &pOut[3 * CMPLX_DIM * MATRIX_DIM]);
pOut += CMPLX_DIM;
/*
* move to next B column
*/
pInB = pInB + CMPLX_DIM;
vecB = vldrhq_gather_shifted_offset(pInB, vecColBOffs0);
vecA = vldrhq_f16(pInA0);
acc0 = vcmulq(vecA, vecB);
acc0 = vcmlaq_rot90(acc0, vecA, vecB);
vecA = vldrhq_f16(pInA1);
acc1 = vcmulq(vecA, vecB);
acc1 = vcmlaq_rot90(acc1, vecA, vecB);
vecA = vldrhq_f16(pInA2);
acc2 = vcmulq(vecA, vecB);
acc2 = vcmlaq_rot90(acc2, vecA, vecB);
vecA = vldrhq_f16(pInA3);
acc3 = vcmulq(vecA, vecB);
acc3 = vcmlaq_rot90(acc3, vecA, vecB);
mve_cmplx_sum_intra_vec_f16(acc0, &pOut[0 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc1, &pOut[1 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc2, &pOut[2 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc3, &pOut[3 * CMPLX_DIM * MATRIX_DIM]);
pOut += CMPLX_DIM;
/*
* move to next B column
*/
pInB = pInB + CMPLX_DIM;
vecB = vldrhq_gather_shifted_offset(pInB, vecColBOffs0);
vecA = vldrhq_f16(pInA0);
acc0 = vcmulq(vecA, vecB);
acc0 = vcmlaq_rot90(acc0, vecA, vecB);
vecA = vldrhq_f16(pInA1);
acc1 = vcmulq(vecA, vecB);
acc1 = vcmlaq_rot90(acc1, vecA, vecB);
vecA = vldrhq_f16(pInA2);
acc2 = vcmulq(vecA, vecB);
acc2 = vcmlaq_rot90(acc2, vecA, vecB);
vecA = vldrhq_f16(pInA3);
acc3 = vcmulq(vecA, vecB);
acc3 = vcmlaq_rot90(acc3, vecA, vecB);
mve_cmplx_sum_intra_vec_f16(acc0, &pOut[0 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc1, &pOut[1 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc2, &pOut[2 * CMPLX_DIM * MATRIX_DIM]);
mve_cmplx_sum_intra_vec_f16(acc3, &pOut[3 * CMPLX_DIM * MATRIX_DIM]);
/*
* Return to application
*/
return (ARM_MATH_SUCCESS);
}
arm_status arm_mat_cmplx_mult_f16(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst)
{
float16_t const *pInB = (float16_t const *) pSrcB->pData; /* input data matrix pointer B */
float16_t const *pInA = (float16_t const *) pSrcA->pData; /* input data matrix pointer A */
float16_t *pOut = pDst->pData; /* output data matrix pointer */
float16_t *px; /* Temporary output data matrix pointer */
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
uint16_t col, i = 0U, row = numRowsA; /* loop counters */
arm_status status; /* status of matrix multiplication */
uint16x8_t vecOffs, vecColBOffs;
uint32_t blkCnt,rowCnt; /* loop counters */
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) ||
(pSrcB->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/*
* small squared matrix specialized routines
*/
if (numRowsA == numColsB && numColsB == numColsA)
{
if (numRowsA == 1)
{
pOut[0] = pInA[0] * pInB[0] - pInA[1] * pInB[1];
pOut[1] = pInA[0] * pInB[1] + pInA[1] * pInB[0];
return (ARM_MATH_SUCCESS);
}
else if (numRowsA == 2)
return arm_mat_cmplx_mult_f16_2x2_mve(pSrcA, pSrcB, pDst);
else if (numRowsA == 3)
return arm_mat_cmplx_mult_f16_3x3_mve(pSrcA, pSrcB, pDst);
else if (numRowsA == 4)
return arm_mat_cmplx_mult_f16_4x4_mve(pSrcA, pSrcB, pDst);
}
vecColBOffs[0] = 0;
vecColBOffs[1] = 1;
vecColBOffs[2] = numColsB * CMPLX_DIM;
vecColBOffs[3] = (numColsB * CMPLX_DIM) + 1;
vecColBOffs[4] = 2*numColsB * CMPLX_DIM;
vecColBOffs[5] = 2*(numColsB * CMPLX_DIM) + 1;
vecColBOffs[6] = 3*numColsB * CMPLX_DIM;
vecColBOffs[7] = 3*(numColsB * CMPLX_DIM) + 1;
/*
* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
*/
/*
* row loop
*/
rowCnt = row >> 2;
while (rowCnt > 0u)
{
/*
* Output pointer is set to starting address of the row being processed
*/
px = pOut + i * CMPLX_DIM;
i = i + 4 * numColsB;
/*
* For every row wise process, the column loop counter is to be initiated
*/
col = numColsB;
/*
* For every row wise process, the pInB pointer is set
* to the starting address of the pSrcB data
*/
pInB = (float16_t const *) pSrcB->pData;
/*
* column loop
*/
while (col > 0u)
{
/*
* generate 4 columns elements
*/
/*
* Matrix A columns number of MAC operations are to be performed
*/
float16_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec;
float16_t const *pInA0 = pInA;
float16_t const *pInA1 = pInA0 + numColsA * CMPLX_DIM;
float16_t const *pInA2 = pInA1 + numColsA * CMPLX_DIM;
float16_t const *pInA3 = pInA2 + numColsA * CMPLX_DIM;
f16x8_t acc0, acc1, acc2, acc3;
acc0 = vdupq_n_f16(0.0f16);
acc1 = vdupq_n_f16(0.0f16);
acc2 = vdupq_n_f16(0.0f16);
acc3 = vdupq_n_f16(0.0f16);
pSrcA0Vec = (float16_t const *) pInA0;
pSrcA1Vec = (float16_t const *) pInA1;
pSrcA2Vec = (float16_t const *) pInA2;
pSrcA3Vec = (float16_t const *) pInA3;
vecOffs = vecColBOffs;
/*
* process 1 x 4 block output
*/
blkCnt = (numColsA * CMPLX_DIM) >> 3;
while (blkCnt > 0U)
{
f16x8_t vecB, vecA;
vecB = vldrhq_gather_shifted_offset_f16(pInB, vecOffs);
/*
* move Matrix B read offsets, 4 rows down
*/
vecOffs = vaddq_n_u16(vecOffs , (uint16_t) (numColsB * 4 * CMPLX_DIM));
vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 8;
acc0 = vcmlaq(acc0, vecA, vecB);
acc0 = vcmlaq_rot90(acc0, vecA, vecB);
vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 8;
acc1 = vcmlaq(acc1, vecA, vecB);
acc1 = vcmlaq_rot90(acc1, vecA, vecB);
vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 8;
acc2 = vcmlaq(acc2, vecA, vecB);
acc2 = vcmlaq_rot90(acc2, vecA, vecB);
vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 8;
acc3 = vcmlaq(acc3, vecA, vecB);
acc3 = vcmlaq_rot90(acc3, vecA, vecB);
blkCnt--;
}
/*
* Unsupported addressing mode compiler crash
*/
/*
* tail
* (will be merged thru tail predication)
*/
blkCnt = (numColsA * CMPLX_DIM) & 7;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecB, vecA;
vecB = vldrhq_gather_shifted_offset_z_f16(pInB, vecOffs, p0);
/*
* move Matrix B read offsets, 4 rows down
*/
vecOffs = vaddq_n_u16(vecOffs, (uint16_t) (numColsB * 4 * CMPLX_DIM));
vecA = vld1q(pSrcA0Vec);
acc0 = vcmlaq(acc0, vecA, vecB);
acc0 = vcmlaq_rot90(acc0, vecA, vecB);
vecA = vld1q(pSrcA1Vec);
acc1 = vcmlaq(acc1, vecA, vecB);
acc1 = vcmlaq_rot90(acc1, vecA, vecB);
vecA = vld1q(pSrcA2Vec);
acc2 = vcmlaq(acc2, vecA, vecB);
acc2 = vcmlaq_rot90(acc2, vecA, vecB);
vecA = vld1q(pSrcA3Vec);
acc3 = vcmlaq(acc3, vecA, vecB);
acc3 = vcmlaq_rot90(acc3, vecA, vecB);
}
mve_cmplx_sum_intra_vec_f16(acc0, &px[0 * CMPLX_DIM * numColsB + 0]);
mve_cmplx_sum_intra_vec_f16(acc1, &px[1 * CMPLX_DIM * numColsB + 0]);
mve_cmplx_sum_intra_vec_f16(acc2, &px[2 * CMPLX_DIM * numColsB + 0]);
mve_cmplx_sum_intra_vec_f16(acc3, &px[3 * CMPLX_DIM * numColsB + 0]);
px += CMPLX_DIM;
/*
* Decrement the column loop counter
*/
col--;
/*
* Update the pointer pInB to point to the starting address of the next column
*/
pInB = (float16_t const *) pSrcB->pData + (numColsB - col) * CMPLX_DIM;
}
/*
* Update the pointer pInA to point to the starting address of the next row
*/
pInA += (numColsA * 4) * CMPLX_DIM;
/*
* Decrement the row loop counter
*/
rowCnt --;
}
rowCnt = row & 3;
while (rowCnt > 0u)
{
/*
* Output pointer is set to starting address of the row being processed
*/
px = pOut + i * CMPLX_DIM;
i = i + numColsB;
/*
* For every row wise process, the column loop counter is to be initiated
*/
col = numColsB;
/*
* For every row wise process, the pInB pointer is set
* to the starting address of the pSrcB data
*/
pInB = (float16_t const *) pSrcB->pData;
/*
* column loop
*/
while (col > 0u)
{
/*
* generate 4 columns elements
*/
/*
* Matrix A columns number of MAC operations are to be performed
*/
float16_t const *pSrcA0Vec;
float16_t const *pInA0 = pInA;
f16x8_t acc0;
acc0 = vdupq_n_f16(0.0f16);
pSrcA0Vec = (float16_t const *) pInA0;
vecOffs = vecColBOffs;
/*
* process 1 x 4 block output
*/
blkCnt = (numColsA * CMPLX_DIM) >> 3;
while (blkCnt > 0U)
{
f16x8_t vecB, vecA;
vecB = vldrhq_gather_shifted_offset(pInB, vecOffs);
/*
* move Matrix B read offsets, 4 rows down
*/
vecOffs = vaddq_n_u16(vecOffs, (uint16_t) (4*numColsB * CMPLX_DIM));
vecA = vld1q(pSrcA0Vec);
pSrcA0Vec += 8;
acc0 = vcmlaq(acc0, vecA, vecB);
acc0 = vcmlaq_rot90(acc0, vecA, vecB);
blkCnt--;
}
/*
* tail
*/
blkCnt = (numColsA * CMPLX_DIM) & 7;
if (blkCnt > 0U)
{
mve_pred16_t p0 = vctp16q(blkCnt);
f16x8_t vecB, vecA;
vecB = vldrhq_gather_shifted_offset_z(pInB, vecOffs, p0);
vecA = vld1q(pSrcA0Vec);
acc0 = vcmlaq(acc0, vecA, vecB);
acc0 = vcmlaq_rot90(acc0, vecA, vecB);
}
mve_cmplx_sum_intra_vec_f16(acc0, &px[0]);
px += CMPLX_DIM;
/*
* Decrement the column loop counter
*/
col--;
/*
* Update the pointer pInB to point to the starting address of the next column
*/
pInB = (float16_t const *) pSrcB->pData + (numColsB - col) * CMPLX_DIM;
}
/*
* Update the pointer pInA to point to the starting address of the next row
*/
pInA += numColsA * CMPLX_DIM;
rowCnt--;
}
/*
* set status as ARM_MATH_SUCCESS
*/
status = ARM_MATH_SUCCESS;
}
/*
* Return to application
*/
return (status);
}
#else
arm_status arm_mat_cmplx_mult_f16(
const arm_matrix_instance_f16 * pSrcA,
const arm_matrix_instance_f16 * pSrcB,
arm_matrix_instance_f16 * pDst)
{
float16_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
float16_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
float16_t *pInA = pSrcA->pData; /* Input data matrix pointer A */
float16_t *pOut = pDst->pData; /* Output data matrix pointer */
float16_t *px; /* Temporary output data matrix pointer */
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
_Float16 sumReal, sumImag; /* Accumulator */
_Float16 a1, b1, c1, d1;
uint32_t col, i = 0U, j, row = numRowsA, colCnt; /* loop counters */
arm_status status; /* status of matrix multiplication */
#if defined (ARM_MATH_LOOPUNROLL)
_Float16 a0, b0, c0, d0;
#endif
#ifdef ARM_MATH_MATRIX_CHECK
/* Check for matrix mismatch condition */
if ((pSrcA->numCols != pSrcB->numRows) ||
(pSrcA->numRows != pDst->numRows) ||
(pSrcB->numCols != pDst->numCols) )
{
/* Set status as ARM_MATH_SIZE_MISMATCH */
status = ARM_MATH_SIZE_MISMATCH;
}
else
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
{
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
/* row loop */
do
{
/* Output pointer is set to starting address of the row being processed */
px = pOut + 2 * i;
/* For every row wise process, the column loop counter is to be initiated */
col = numColsB;
/* For every row wise process, the pIn2 pointer is set
** to the starting address of the pSrcB data */
pIn2 = pSrcB->pData;
j = 0U;
/* column loop */
do
{
/* Set the variable sum, that acts as accumulator, to zero */
sumReal = 0.0f16;
sumImag = 0.0f16;
/* Initiate pointer pIn1 to point to starting address of column being processed */
pIn1 = pInA;
#if defined (ARM_MATH_LOOPUNROLL)
/* Apply loop unrolling and compute 4 MACs simultaneously. */
colCnt = numColsA >> 2U;
/* matrix multiplication */
while (colCnt > 0U)
{
/* Reading real part of complex matrix A */
a0 = *pIn1;
/* Reading real part of complex matrix B */
c0 = *pIn2;
/* Reading imaginary part of complex matrix A */
b0 = *(pIn1 + 1U);
/* Reading imaginary part of complex matrix B */
d0 = *(pIn2 + 1U);
/* Multiply and Accumlates */
sumReal += a0 * c0;
sumImag += b0 * c0;
/* update pointers */
pIn1 += 2U;
pIn2 += 2 * numColsB;
/* Multiply and Accumlates */
sumReal -= b0 * d0;
sumImag += a0 * d0;
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
/* read real and imag values from pSrcA and pSrcB buffer */
a1 = *(pIn1 );
c1 = *(pIn2 );
b1 = *(pIn1 + 1U);
d1 = *(pIn2 + 1U);
/* Multiply and Accumlates */
sumReal += a1 * c1;
sumImag += b1 * c1;
/* update pointers */
pIn1 += 2U;
pIn2 += 2 * numColsB;
/* Multiply and Accumlates */
sumReal -= b1 * d1;
sumImag += a1 * d1;
a0 = *(pIn1 );
c0 = *(pIn2 );
b0 = *(pIn1 + 1U);
d0 = *(pIn2 + 1U);
/* Multiply and Accumlates */
sumReal += a0 * c0;
sumImag += b0 * c0;
/* update pointers */
pIn1 += 2U;
pIn2 += 2 * numColsB;
/* Multiply and Accumlates */
sumReal -= b0 * d0;
sumImag += a0 * d0;
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
a1 = *(pIn1 );
c1 = *(pIn2 );
b1 = *(pIn1 + 1U);
d1 = *(pIn2 + 1U);
/* Multiply and Accumlates */
sumReal += a1 * c1;
sumImag += b1 * c1;
/* update pointers */
pIn1 += 2U;
pIn2 += 2 * numColsB;
/* Multiply and Accumlates */
sumReal -= b1 * d1;
sumImag += a1 * d1;
/* Decrement loop count */
colCnt--;
}
/* If the columns of pSrcA is not a multiple of 4, compute any remaining MACs here.
** No loop unrolling is used. */
colCnt = numColsA % 0x4U;
#else
/* Initialize blkCnt with number of samples */
colCnt = numColsA;
#endif /* #if defined (ARM_MATH_LOOPUNROLL) */
while (colCnt > 0U)
{
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
a1 = *(pIn1 );
c1 = *(pIn2 );
b1 = *(pIn1 + 1U);
d1 = *(pIn2 + 1U);
/* Multiply and Accumlates */
sumReal += a1 * c1;
sumImag += b1 * c1;
/* update pointers */
pIn1 += 2U;
pIn2 += 2 * numColsB;
/* Multiply and Accumlates */
sumReal -= b1 * d1;
sumImag += a1 * d1;
/* Decrement loop counter */
colCnt--;
}
/* Store result in destination buffer */
*px++ = sumReal;
*px++ = sumImag;
/* Update pointer pIn2 to point to starting address of next column */
j++;
pIn2 = pSrcB->pData + 2U * j;
/* Decrement column loop counter */
col--;
} while (col > 0U);
/* Update pointer pInA to point to starting address of next row */
i = i + numColsB;
pInA = pInA + 2 * numColsA;
/* Decrement row loop counter */
row--;
} while (row > 0U);
/* Set status as ARM_MATH_SUCCESS */
status = ARM_MATH_SUCCESS;
}
/* Return to application */
return (status);
}
#endif /* defined(ARM_MATH_MVEF) && !defined(ARM_MATH_AUTOVECTORIZE) */
/**
@} end of MatrixMult group
*/
#endif /* #if defined(ARM_FLOAT16_SUPPORTED) */