You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
891 lines
27 KiB
C
891 lines
27 KiB
C
/* ----------------------------------------------------------------------
|
|
* Project: CMSIS DSP Library
|
|
* Title: arm_mat_mult_q15.c
|
|
* Description: Q15 matrix multiplication
|
|
*
|
|
* $Date: 23 April 2021
|
|
* $Revision: V1.9.0
|
|
*
|
|
* Target Processor: Cortex-M and Cortex-A cores
|
|
* -------------------------------------------------------------------- */
|
|
/*
|
|
* Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved.
|
|
*
|
|
* SPDX-License-Identifier: Apache-2.0
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the License); you may
|
|
* not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
|
|
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "dsp/matrix_functions.h"
|
|
|
|
/**
|
|
@ingroup groupMatrix
|
|
*/
|
|
|
|
/**
|
|
@addtogroup MatrixMult
|
|
@{
|
|
*/
|
|
|
|
/**
|
|
@brief Q15 matrix multiplication.
|
|
@param[in] pSrcA points to the first input matrix structure
|
|
@param[in] pSrcB points to the second input matrix structure
|
|
@param[out] pDst points to output matrix structure
|
|
@param[in] pState points to the array for storing intermediate results (Unused)
|
|
@return execution status
|
|
- \ref ARM_MATH_SUCCESS : Operation successful
|
|
- \ref ARM_MATH_SIZE_MISMATCH : Matrix size check failed
|
|
|
|
@par Scaling and Overflow Behavior
|
|
The function is implemented using an internal 64-bit accumulator. The inputs to the
|
|
multiplications are in 1.15 format and multiplications yield a 2.30 result.
|
|
The 2.30 intermediate results are accumulated in a 64-bit accumulator in 34.30 format.
|
|
This approach provides 33 guard bits and there is no risk of overflow.
|
|
The 34.30 result is then truncated to 34.15 format by discarding the low 15 bits
|
|
and then saturated to 1.15 format.
|
|
@par
|
|
Refer to \ref arm_mat_mult_fast_q15() for a faster but less precise version of this function.
|
|
*/
|
|
#if defined(ARM_MATH_MVEI) && !defined(ARM_MATH_AUTOVECTORIZE)
|
|
|
|
#define MVE_ASRL_SAT16(acc, shift) ((sqrshrl_sat48(acc, -(32-shift)) >> 32) & 0xffffffff)
|
|
|
|
#define MATRIX_DIM2 2
|
|
#define MATRIX_DIM3 3
|
|
#define MATRIX_DIM4 4
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_q15_2x2_mve(
|
|
const arm_matrix_instance_q15 * pSrcA,
|
|
const arm_matrix_instance_q15 * pSrcB,
|
|
arm_matrix_instance_q15 * pDst)
|
|
{
|
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q15_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint16x8_t vecColBOffs;
|
|
q15_t *pInA0 = pInA;
|
|
q15_t *pInA1 = pInA0 + MATRIX_DIM2;
|
|
q63_t acc0, acc1;
|
|
q15x8_t vecB, vecA0, vecA1;
|
|
mve_pred16_t p0 = vctp16q(MATRIX_DIM2);
|
|
|
|
vecColBOffs = vidupq_u16((uint32_t)0, 2); /* MATRIX_DIM2 */
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
|
|
|
|
vecA0 = vldrhq_s16(pInA0);
|
|
vecA1 = vldrhq_s16(pInA1);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
|
|
pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
|
|
pOut[0 * MATRIX_DIM2] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM2] = (q15_t) __SSAT(acc1, 16);
|
|
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_q15_3x3_mve(
|
|
const arm_matrix_instance_q15 * pSrcA,
|
|
const arm_matrix_instance_q15 * pSrcB,
|
|
arm_matrix_instance_q15 * pDst)
|
|
{
|
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q15_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint16x8_t vecColBOffs;
|
|
q15_t *pInA0 = pInA;
|
|
q15_t *pInA1 = pInA0 + MATRIX_DIM3;
|
|
q15_t *pInA2 = pInA1 + MATRIX_DIM3;
|
|
q63_t acc0, acc1, acc2;
|
|
q15x8_t vecB, vecA0, vecA1, vecA2;
|
|
mve_pred16_t p0 = vctp16q(MATRIX_DIM3);
|
|
|
|
vecColBOffs = vidupq_u16((uint32_t)0, 1);
|
|
vecColBOffs = vecColBOffs * MATRIX_DIM3;
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
|
|
|
|
vecA0 = vldrhq_s16(pInA0);
|
|
vecA1 = vldrhq_s16(pInA1);
|
|
vecA2 = vldrhq_s16(pInA2);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
acc2 = vmlaldavq(vecA2, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
acc2 = asrl(acc2, 15);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
|
|
pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
acc2 = vmlaldavq(vecA2, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
acc2 = asrl(acc2, 15);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
|
|
pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
acc2 = vmlaldavq(vecA2, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
acc2 = asrl(acc2, 15);
|
|
|
|
pOut[0 * MATRIX_DIM3] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM3] = (q15_t) __SSAT(acc1, 16);
|
|
pOut[2 * MATRIX_DIM3] = (q15_t) __SSAT(acc2, 16);
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
|
|
__STATIC_INLINE arm_status arm_mat_mult_q15_4x4_mve(
|
|
const arm_matrix_instance_q15 * pSrcA,
|
|
const arm_matrix_instance_q15 * pSrcB,
|
|
arm_matrix_instance_q15 * pDst)
|
|
{
|
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q15_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
uint16x8_t vecColBOffs;
|
|
q15_t *pInA0 = pInA;
|
|
q15_t *pInA1 = pInA0 + MATRIX_DIM4;
|
|
q15_t *pInA2 = pInA1 + MATRIX_DIM4;
|
|
q15_t *pInA3 = pInA2 + MATRIX_DIM4;
|
|
q63_t acc0, acc1, acc2, acc3;
|
|
q15x8_t vecB, vecA0, vecA1, vecA2, vecA3;
|
|
mve_pred16_t p0 = vctp16q(MATRIX_DIM4);
|
|
|
|
vecColBOffs = vidupq_u16((uint32_t)0, 4);
|
|
|
|
pInB = pSrcB->pData;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16((q15_t const *)pInB, vecColBOffs, p0);
|
|
|
|
vecA0 = vldrhq_s16(pInA0);
|
|
vecA1 = vldrhq_s16(pInA1);
|
|
vecA2 = vldrhq_s16(pInA2);
|
|
vecA3 = vldrhq_s16(pInA3);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
acc2 = vmlaldavq(vecA2, vecB);
|
|
acc3 = vmlaldavq(vecA3, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
acc2 = asrl(acc2, 15);
|
|
acc3 = asrl(acc3, 15);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
|
|
pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
|
|
pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
acc2 = vmlaldavq(vecA2, vecB);
|
|
acc3 = vmlaldavq(vecA3, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
acc2 = asrl(acc2, 15);
|
|
acc3 = asrl(acc3, 15);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
|
|
pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
|
|
pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
|
|
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
acc2 = vmlaldavq(vecA2, vecB);
|
|
acc3 = vmlaldavq(vecA3, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
acc2 = asrl(acc2, 15);
|
|
acc3 = asrl(acc3, 15);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
|
|
pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
|
|
pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
|
|
|
|
pOut++;
|
|
|
|
/* move to next B column */
|
|
pInB = pInB + 1;
|
|
|
|
vecB = vldrhq_gather_shifted_offset_z_s16(pInB, vecColBOffs, p0);
|
|
|
|
acc0 = vmlaldavq(vecA0, vecB);
|
|
acc1 = vmlaldavq(vecA1, vecB);
|
|
acc2 = vmlaldavq(vecA2, vecB);
|
|
acc3 = vmlaldavq(vecA3, vecB);
|
|
|
|
acc0 = asrl(acc0, 15);
|
|
acc1 = asrl(acc1, 15);
|
|
acc2 = asrl(acc2, 15);
|
|
acc3 = asrl(acc3, 15);
|
|
|
|
pOut[0 * MATRIX_DIM4] = (q15_t) __SSAT(acc0, 16);
|
|
pOut[1 * MATRIX_DIM4] = (q15_t) __SSAT(acc1, 16);
|
|
pOut[2 * MATRIX_DIM4] = (q15_t) __SSAT(acc2, 16);
|
|
pOut[3 * MATRIX_DIM4] = (q15_t) __SSAT(acc3, 16);
|
|
/*
|
|
* Return to application
|
|
*/
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
|
|
arm_status arm_mat_mult_q15(
|
|
const arm_matrix_instance_q15 * pSrcA,
|
|
const arm_matrix_instance_q15 * pSrcB,
|
|
arm_matrix_instance_q15 * pDst,
|
|
q15_t * pState)
|
|
{
|
|
q15_t *pInB = pSrcB->pData; /* input data matrix pointer B */
|
|
q15_t *pInA = pSrcA->pData; /* input data matrix pointer A */
|
|
q15_t *pOut = pDst->pData; /* output data matrix pointer */
|
|
q15_t *px; /* Temporary output data matrix pointer */
|
|
uint16_t numRowsA = pSrcA->numRows; /* number of rows of input matrix A */
|
|
uint16_t numColsB = pSrcB->numCols; /* number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* number of columns of input matrix A */
|
|
uint16_t col, i = 0U, row = numRowsA; /* loop counters */
|
|
uint16x8_t vecOffs, vecColBOffs;
|
|
uint32_t blkCnt,rowCnt; /* loop counters */
|
|
arm_status status; /* Status of matrix multiplication */
|
|
(void)pState;
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
/* small squared matrix specialized routines */
|
|
if(numRowsA == numColsB && numColsB == numColsA) {
|
|
|
|
if (numRowsA == 1)
|
|
{
|
|
q63_t sum;
|
|
sum = pInA[0] * pInB[0];
|
|
pOut[0] = (q15_t) __SSAT((sum >> 15), 16);
|
|
return (ARM_MATH_SUCCESS);
|
|
}
|
|
else if(numRowsA == 2)
|
|
return arm_mat_mult_q15_2x2_mve(pSrcA, pSrcB, pDst);
|
|
else if(numRowsA == 3)
|
|
return arm_mat_mult_q15_3x3_mve(pSrcA, pSrcB, pDst);
|
|
else if (numRowsA == 4)
|
|
return arm_mat_mult_q15_4x4_mve(pSrcA, pSrcB, pDst);
|
|
}
|
|
|
|
vecColBOffs = vidupq_u16((uint32_t)0, 1);
|
|
vecColBOffs = vecColBOffs * (uint16_t) (numColsB);
|
|
|
|
/*
|
|
* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB
|
|
*/
|
|
|
|
/*
|
|
* row loop
|
|
*/
|
|
rowCnt = row >> 2;
|
|
while (rowCnt > 0U)
|
|
{
|
|
/*
|
|
* Output pointer is set to starting address of the row being processed
|
|
*/
|
|
px = pOut + i;
|
|
i = i + 4 * numColsB;
|
|
/*
|
|
* For every row wise process, the column loop counter is to be initiated
|
|
*/
|
|
col = numColsB;
|
|
/*
|
|
* For every row wise process, the pInB pointer is set
|
|
* to the starting address of the pSrcB data
|
|
*/
|
|
pInB = pSrcB->pData;
|
|
/*
|
|
* column loop
|
|
*/
|
|
while (col > 0U)
|
|
{
|
|
/*
|
|
* generate 4 columns elements
|
|
*/
|
|
/*
|
|
* Matrix A columns number of MAC operations are to be performed
|
|
*/
|
|
|
|
q15_t const *pSrcA0Vec, *pSrcA1Vec, *pSrcA2Vec, *pSrcA3Vec;
|
|
q15_t *pInA0 = pInA;
|
|
q15_t *pInA1 = pInA0 + numColsA;
|
|
q15_t *pInA2 = pInA1 + numColsA;
|
|
q15_t *pInA3 = pInA2 + numColsA;
|
|
q63_t acc0, acc1, acc2, acc3;
|
|
|
|
acc0 = 0LL;
|
|
acc1 = 0LL;
|
|
acc2 = 0LL;
|
|
acc3 = 0LL;
|
|
|
|
pSrcA0Vec = (q15_t const *) pInA0;
|
|
pSrcA1Vec = (q15_t const *) pInA1;
|
|
pSrcA2Vec = (q15_t const *) pInA2;
|
|
pSrcA3Vec = (q15_t const *) pInA3;
|
|
|
|
vecOffs = vecColBOffs;
|
|
|
|
blkCnt = (numColsA) >> 3;
|
|
while (blkCnt > 0U)
|
|
{
|
|
q15x8_t vecB, vecA;
|
|
|
|
vecB = vldrhq_gather_shifted_offset((int16_t const *)pInB, vecOffs);
|
|
vecOffs = vecOffs + (uint16_t) (numColsB * 8);
|
|
|
|
vecA = vld1q(pSrcA0Vec); pSrcA0Vec += 8;
|
|
acc0 = vmlaldavaq(acc0, vecA, vecB);
|
|
vecA = vld1q(pSrcA1Vec); pSrcA1Vec += 8;
|
|
acc1 = vmlaldavaq(acc1, vecA, vecB);
|
|
vecA = vld1q(pSrcA2Vec); pSrcA2Vec += 8;
|
|
acc2 = vmlaldavaq(acc2, vecA, vecB);
|
|
vecA = vld1q(pSrcA3Vec); pSrcA3Vec += 8;
|
|
acc3 = vmlaldavaq(acc3, vecA, vecB);
|
|
blkCnt--;
|
|
|
|
}
|
|
/*
|
|
* tail
|
|
*/
|
|
blkCnt = numColsA & 7;
|
|
if (blkCnt > 0U)
|
|
{
|
|
mve_pred16_t p0 = vctp16q(blkCnt);
|
|
q15x8_t vecB, vecA;
|
|
|
|
vecB = vldrhq_gather_shifted_offset((int16_t const *)pInB, vecOffs);
|
|
vecOffs = vecOffs + (uint16_t) (numColsB * 8);
|
|
|
|
vecA = vld1q(pSrcA0Vec);
|
|
acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
|
|
vecA = vld1q(pSrcA1Vec);
|
|
acc1 = vmlaldavaq_p(acc1, vecA, vecB, p0);
|
|
vecA = vld1q(pSrcA2Vec);
|
|
acc2 = vmlaldavaq_p(acc2, vecA, vecB, p0);
|
|
vecA = vld1q(pSrcA3Vec);
|
|
acc3 = vmlaldavaq_p(acc3, vecA, vecB, p0);
|
|
}
|
|
|
|
px[0] = (q15_t)MVE_ASRL_SAT16(acc0, 15);
|
|
px[1 * numColsB] = (q15_t)MVE_ASRL_SAT16(acc1, 15);
|
|
px[2 * numColsB] = (q15_t)MVE_ASRL_SAT16(acc2, 15);
|
|
px[3 * numColsB] = (q15_t)MVE_ASRL_SAT16(acc3, 15);
|
|
px++;
|
|
/*
|
|
* Decrement the column loop counter
|
|
*/
|
|
col--;
|
|
/*
|
|
* Update the pointer pInB to point to the starting address of the next column
|
|
*/
|
|
pInB = pSrcB->pData + (numColsB - col);
|
|
}
|
|
|
|
/*
|
|
* Update the pointer pInA to point to the starting address of the next row
|
|
*/
|
|
pInA += (numColsA * 4);
|
|
/*
|
|
* Decrement the row loop counter
|
|
*/
|
|
rowCnt --;
|
|
|
|
}
|
|
|
|
rowCnt = row & 3;
|
|
while (rowCnt > 0U)
|
|
{
|
|
/*
|
|
* Output pointer is set to starting address of the row being processed
|
|
*/
|
|
px = pOut + i;
|
|
i = i + numColsB;
|
|
/*
|
|
* For every row wise process, the column loop counter is to be initiated
|
|
*/
|
|
col = numColsB;
|
|
/*
|
|
* For every row wise process, the pInB pointer is set
|
|
* to the starting address of the pSrcB data
|
|
*/
|
|
pInB = pSrcB->pData;
|
|
/*
|
|
* column loop
|
|
*/
|
|
while (col > 0U)
|
|
{
|
|
/*
|
|
* generate 4 columns elements
|
|
*/
|
|
/*
|
|
* Matrix A columns number of MAC operations are to be performed
|
|
*/
|
|
|
|
q15_t const *pSrcA0Vec;
|
|
q15_t *pInA0 = pInA;
|
|
q63_t acc0;
|
|
|
|
acc0 = 0LL;
|
|
|
|
pSrcA0Vec = (q15_t const *) pInA0;
|
|
|
|
vecOffs = vecColBOffs;
|
|
|
|
blkCnt = (numColsA) >> 3;
|
|
while (blkCnt > 0U)
|
|
{
|
|
q15x8_t vecB, vecA;
|
|
|
|
vecB = vldrhq_gather_shifted_offset((int16_t const *)pInB, vecOffs);
|
|
vecOffs = vecOffs + (uint16_t) (numColsB * 8);
|
|
|
|
vecA = vld1q(pSrcA0Vec);
|
|
pSrcA0Vec += 8;
|
|
acc0 = vmlaldavaq(acc0, vecA, vecB);
|
|
|
|
blkCnt--;
|
|
|
|
}
|
|
/*
|
|
* tail
|
|
*/
|
|
blkCnt = numColsA & 7;
|
|
if (blkCnt > 0U)
|
|
{
|
|
mve_pred16_t p0 = vctp16q(blkCnt);
|
|
q15x8_t vecB, vecA;
|
|
|
|
vecB = vldrhq_gather_shifted_offset((int16_t const *)pInB, vecOffs);
|
|
vecOffs = vecOffs + (uint16_t) (numColsB * 8);
|
|
|
|
vecA = vld1q(pSrcA0Vec);
|
|
acc0 = vmlaldavaq_p(acc0, vecA, vecB, p0);
|
|
|
|
}
|
|
|
|
px[0] = (q15_t)MVE_ASRL_SAT16(acc0, 15);
|
|
|
|
px++;
|
|
/*
|
|
* Decrement the column loop counter
|
|
*/
|
|
col--;
|
|
/*
|
|
* Update the pointer pInB to point to the starting address of the next column
|
|
*/
|
|
pInB = pSrcB->pData + (numColsB - col);
|
|
}
|
|
|
|
/*
|
|
* Update the pointer pInA to point to the starting address of the next row
|
|
*/
|
|
pInA += (numColsA );
|
|
rowCnt--;
|
|
}
|
|
/* Set status as ARM_MATH_SUCCESS */
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
|
|
}
|
|
#else
|
|
arm_status arm_mat_mult_q15(
|
|
const arm_matrix_instance_q15 * pSrcA,
|
|
const arm_matrix_instance_q15 * pSrcB,
|
|
arm_matrix_instance_q15 * pDst,
|
|
q15_t * pState)
|
|
{
|
|
q63_t sum; /* Accumulator */
|
|
|
|
#if defined (ARM_MATH_DSP) /* != CM0 */
|
|
|
|
q15_t *pSrcBT = pState; /* Input data matrix pointer for transpose */
|
|
q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
|
|
q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
|
|
q15_t *px; /* Temporary output data matrix pointer */
|
|
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
|
|
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
|
|
uint16_t numRowsB = pSrcB->numRows; /* Number of rows of input matrix B */
|
|
uint32_t col, i = 0U, row = numRowsB, colCnt; /* Loop counters */
|
|
arm_status status; /* Status of matrix multiplication */
|
|
|
|
q31_t in; /* Temporary variable to hold the input value */
|
|
q31_t inA1, inB1, inA2, inB2;
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* Matrix transpose */
|
|
do
|
|
{
|
|
/* The pointer px is set to starting address of column being processed */
|
|
px = pSrcBT + i;
|
|
|
|
/* Apply loop unrolling and exchange columns with row elements */
|
|
col = numColsB >> 2U;
|
|
|
|
/* First part of the processing with loop unrolling. Compute 4 outputs at a time.
|
|
** a second loop below computes the remaining 1 to 3 samples. */
|
|
while (col > 0U)
|
|
{
|
|
/* Read two elements from row */
|
|
in = read_q15x2_ia ((q15_t **) &pInB);
|
|
|
|
/* Unpack and store one element in destination */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) in;
|
|
#else
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
|
|
/* Update pointer px to point to next row of transposed matrix */
|
|
px += numRowsB;
|
|
|
|
/* Unpack and store second element in destination */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#else
|
|
*px = (q15_t) in;
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
|
|
/* Update pointer px to point to next row of transposed matrix */
|
|
px += numRowsB;
|
|
|
|
/* Read two elements from row */
|
|
in = read_q15x2_ia ((q15_t **) &pInB);
|
|
|
|
/* Unpack and store one element in destination */
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) in;
|
|
#else
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
px += numRowsB;
|
|
|
|
#ifndef ARM_MATH_BIG_ENDIAN
|
|
*px = (q15_t) ((in & (q31_t) 0xffff0000) >> 16);
|
|
#else
|
|
*px = (q15_t) in;
|
|
#endif /* #ifndef ARM_MATH_BIG_ENDIAN */
|
|
px += numRowsB;
|
|
|
|
/* Decrement column loop counter */
|
|
col--;
|
|
}
|
|
|
|
/* If the columns of pSrcB is not a multiple of 4, compute any remaining output samples here.
|
|
** No loop unrolling is used. */
|
|
col = numColsB % 0x4U;
|
|
|
|
while (col > 0U)
|
|
{
|
|
/* Read and store input element in destination */
|
|
*px = *pInB++;
|
|
|
|
/* Update pointer px to point to next row of transposed matrix */
|
|
px += numRowsB;
|
|
|
|
/* Decrement column loop counter */
|
|
col--;
|
|
}
|
|
|
|
i++;
|
|
|
|
/* Decrement row loop counter */
|
|
row--;
|
|
|
|
} while (row > 0U);
|
|
|
|
/* Reset variables for usage in following multiplication process */
|
|
row = numRowsA;
|
|
i = 0U;
|
|
px = pDst->pData;
|
|
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
|
/* row loop */
|
|
do
|
|
{
|
|
/* For every row wise process, column loop counter is to be initiated */
|
|
col = numColsB;
|
|
|
|
/* For every row wise process, pIn2 pointer is set to starting address of transposed pSrcB data */
|
|
pInB = pSrcBT;
|
|
|
|
/* column loop */
|
|
do
|
|
{
|
|
/* Set variable sum, that acts as accumulator, to zero */
|
|
sum = 0;
|
|
|
|
/* Initiate pointer pInA to point to starting address of column being processed */
|
|
pInA = pSrcA->pData + i;
|
|
|
|
/* Apply loop unrolling and compute 2 MACs simultaneously. */
|
|
colCnt = numColsA >> 2U;
|
|
|
|
/* matrix multiplication */
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
|
|
/* read real and imag values from pSrcA and pSrcB buffer */
|
|
inA1 = read_q15x2_ia ((q15_t **) &pInA);
|
|
inB1 = read_q15x2_ia ((q15_t **) &pInB);
|
|
|
|
inA2 = read_q15x2_ia ((q15_t **) &pInA);
|
|
inB2 = read_q15x2_ia ((q15_t **) &pInB);
|
|
|
|
/* Multiply and Accumulates */
|
|
sum = __SMLALD(inA1, inB1, sum);
|
|
sum = __SMLALD(inA2, inB2, sum);
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* process remaining column samples */
|
|
colCnt = numColsA % 0x4U;
|
|
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
sum += *pInA++ * *pInB++;
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Saturate and store result in destination buffer */
|
|
*px = (q15_t) (__SSAT((sum >> 15), 16));
|
|
px++;
|
|
|
|
/* Decrement column loop counter */
|
|
col--;
|
|
|
|
} while (col > 0U);
|
|
|
|
i = i + numColsA;
|
|
|
|
/* Decrement row loop counter */
|
|
row--;
|
|
|
|
} while (row > 0U);
|
|
|
|
#else /* #if defined (ARM_MATH_DSP) */
|
|
|
|
q15_t *pIn1 = pSrcA->pData; /* Input data matrix pointer A */
|
|
q15_t *pIn2 = pSrcB->pData; /* Input data matrix pointer B */
|
|
q15_t *pInA = pSrcA->pData; /* Input data matrix pointer A of Q15 type */
|
|
q15_t *pInB = pSrcB->pData; /* Input data matrix pointer B of Q15 type */
|
|
q15_t *pOut = pDst->pData; /* Output data matrix pointer */
|
|
q15_t *px; /* Temporary output data matrix pointer */
|
|
uint16_t numColsB = pSrcB->numCols; /* Number of columns of input matrix B */
|
|
uint16_t numColsA = pSrcA->numCols; /* Number of columns of input matrix A */
|
|
uint16_t numRowsA = pSrcA->numRows; /* Number of rows of input matrix A */
|
|
uint32_t col, i = 0U, row = numRowsA, colCnt; /* Loop counters */
|
|
arm_status status; /* Status of matrix multiplication */
|
|
(void)pState;
|
|
|
|
#ifdef ARM_MATH_MATRIX_CHECK
|
|
|
|
/* Check for matrix mismatch condition */
|
|
if ((pSrcA->numCols != pSrcB->numRows) ||
|
|
(pSrcA->numRows != pDst->numRows) ||
|
|
(pSrcB->numCols != pDst->numCols) )
|
|
{
|
|
/* Set status as ARM_MATH_SIZE_MISMATCH */
|
|
status = ARM_MATH_SIZE_MISMATCH;
|
|
}
|
|
else
|
|
|
|
#endif /* #ifdef ARM_MATH_MATRIX_CHECK */
|
|
|
|
{
|
|
/* The following loop performs the dot-product of each row in pSrcA with each column in pSrcB */
|
|
/* row loop */
|
|
do
|
|
{
|
|
/* Output pointer is set to starting address of the row being processed */
|
|
px = pOut + i;
|
|
|
|
/* For every row wise process, column loop counter is to be initiated */
|
|
col = numColsB;
|
|
|
|
/* For every row wise process, pIn2 pointer is set to starting address of pSrcB data */
|
|
pIn2 = pSrcB->pData;
|
|
|
|
/* column loop */
|
|
do
|
|
{
|
|
/* Set the variable sum, that acts as accumulator, to zero */
|
|
sum = 0;
|
|
|
|
/* Initiate pointer pIn1 to point to starting address of pSrcA */
|
|
pIn1 = pInA;
|
|
|
|
/* Matrix A columns number of MAC operations are to be performed */
|
|
colCnt = numColsA;
|
|
|
|
/* matrix multiplication */
|
|
while (colCnt > 0U)
|
|
{
|
|
/* c(m,n) = a(1,1) * b(1,1) + a(1,2) * b(2,1) + .... + a(m,p) * b(p,n) */
|
|
|
|
/* Perform multiply-accumulates */
|
|
sum += (q31_t) * pIn1++ * *pIn2;
|
|
pIn2 += numColsB;
|
|
|
|
/* Decrement loop counter */
|
|
colCnt--;
|
|
}
|
|
|
|
/* Convert result from 34.30 to 1.15 format and store saturated value in destination buffer */
|
|
|
|
/* Saturate and store result in destination buffer */
|
|
*px++ = (q15_t) __SSAT((sum >> 15), 16);
|
|
|
|
/* Decrement column loop counter */
|
|
col--;
|
|
|
|
/* Update pointer pIn2 to point to starting address of next column */
|
|
pIn2 = pInB + (numColsB - col);
|
|
|
|
} while (col > 0U);
|
|
|
|
/* Update pointer pSrcA to point to starting address of next row */
|
|
i = i + numColsB;
|
|
pInA = pInA + numColsA;
|
|
|
|
/* Decrement row loop counter */
|
|
row--;
|
|
|
|
} while (row > 0U);
|
|
|
|
#endif /* #if defined (ARM_MATH_DSP) */
|
|
|
|
/* Set status as ARM_MATH_SUCCESS */
|
|
status = ARM_MATH_SUCCESS;
|
|
}
|
|
|
|
/* Return to application */
|
|
return (status);
|
|
}
|
|
#endif /* defined(ARM_MATH_MVEI) */
|
|
|
|
/**
|
|
@} end of MatrixMult group
|
|
*/
|