You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Testing/Source/Tests/UnaryTestsF32.cpp

296 lines
8.9 KiB
C++

#include "UnaryTestsF32.h"
#include <stdio.h>
#include "Error.h"
#define SNR_THRESHOLD 120
/*
Reference patterns are generated with
a double precision computation.
*/
#define REL_ERROR (1.0e-6)
#define ABS_ERROR (1.0e-5)
/*
Comparisons for inverse
*/
/* Not very accurate for big matrix.
But big matrix needed for checking the vectorized code */
#define SNR_THRESHOLD_INV 70
#define REL_ERROR_INV (1.0e-3)
#define ABS_ERROR_INV (1.0e-3)
/* Upper bound of maximum matrix dimension used by Python */
#define MAXMATRIXDIM 40
#define LOADDATA2() \
const float32_t *inp1=input1.ptr(); \
const float32_t *inp2=input2.ptr(); \
\
float32_t *ap=a.ptr(); \
float32_t *bp=b.ptr(); \
\
float32_t *outp=output.ptr(); \
int16_t *dimsp = dims.ptr(); \
int nbMatrixes = dims.nbSamples() >> 1;\
int rows,columns; \
int i;
#define LOADDATA1() \
const float32_t *inp1=input1.ptr(); \
\
float32_t *ap=a.ptr(); \
\
float32_t *outp=output.ptr(); \
int16_t *dimsp = dims.ptr(); \
int nbMatrixes = dims.nbSamples() >> 1;\
int rows,columns; \
int i;
#define PREPAREDATA2() \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
in1.pData = ap; \
\
in2.numRows=rows; \
in2.numCols=columns; \
memcpy((void*)bp,(const void*)inp2,sizeof(float32_t)*rows*columns);\
in2.pData = bp; \
\
out.numRows=rows; \
out.numCols=columns; \
out.pData = outp;
#define PREPAREDATA1(TRANSPOSED) \
in1.numRows=rows; \
in1.numCols=columns; \
memcpy((void*)ap,(const void*)inp1,sizeof(float32_t)*rows*columns);\
in1.pData = ap; \
\
if (TRANSPOSED) \
{ \
out.numRows=columns; \
out.numCols=rows; \
} \
else \
{ \
out.numRows=rows; \
out.numCols=columns; \
} \
out.pData = outp;
void UnaryTestsF32::test_mat_add_f32()
{
LOADDATA2();
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA2();
arm_mat_add_f32(&this->in1,&this->in2,&this->out);
outp += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_sub_f32()
{
LOADDATA2();
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA2();
arm_mat_sub_f32(&this->in1,&this->in2,&this->out);
outp += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_scale_f32()
{
LOADDATA1();
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA1(false);
arm_mat_scale_f32(&this->in1,0.5f,&this->out);
outp += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_trans_f32()
{
LOADDATA1();
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = *dimsp++;
PREPAREDATA1(true);
arm_mat_trans_f32(&this->in1,&this->out);
outp += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR,REL_ERROR);
}
void UnaryTestsF32::test_mat_inverse_f32()
{
const float32_t *inp1=input1.ptr();
float32_t *ap=a.ptr();
float32_t *outp=output.ptr();
int16_t *dimsp = dims.ptr();
int nbMatrixes = dims.nbSamples();
int rows,columns;
int i;
arm_status status;
for(i=0;i < nbMatrixes ; i ++)
{
rows = *dimsp++;
columns = rows;
PREPAREDATA1(false);
status=arm_mat_inverse_f32(&this->in1,&this->out);
ASSERT_TRUE(status==ARM_MATH_SUCCESS);
outp += (rows * columns);
inp1 += (rows * columns);
}
ASSERT_EMPTY_TAIL(output);
ASSERT_SNR(output,ref,(float32_t)SNR_THRESHOLD_INV);
ASSERT_CLOSE_ERROR(output,ref,ABS_ERROR_INV,REL_ERROR_INV);
}
void UnaryTestsF32::setUp(Testing::testID_t id,std::vector<Testing::param_t>& params,Client::PatternMgr *mgr)
{
switch(id)
{
case TEST_MAT_ADD_F32_1:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFADD1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
break;
case TEST_MAT_SUB_F32_2:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
input2.reload(UnaryTestsF32::INPUTS2_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFSUB1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
b.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPB_F32_ID,mgr);
break;
case TEST_MAT_SCALE_F32_3:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFSCALE1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
break;
case TEST_MAT_TRANS_F32_4:
input1.reload(UnaryTestsF32::INPUTS1_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSUNARY1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFTRANS1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
break;
case TEST_MAT_INVERSE_F32_5:
input1.reload(UnaryTestsF32::INPUTSINV_F32_ID,mgr);
dims.reload(UnaryTestsF32::DIMSINVERT1_S16_ID,mgr);
ref.reload(UnaryTestsF32::REFINV1_F32_ID,mgr);
output.create(ref.nbSamples(),UnaryTestsF32::OUT_F32_ID,mgr);
a.create(MAXMATRIXDIM*MAXMATRIXDIM,UnaryTestsF32::TMPA_F32_ID,mgr);
break;
}
}
void UnaryTestsF32::tearDown(Testing::testID_t id,Client::PatternMgr *mgr)
{
output.dump(mgr);
}