You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
CMSIS-DSP/Source/BayesFunctions/arm_gaussian_naive_bayes_pr...

304 lines
7.6 KiB
C

/* ----------------------------------------------------------------------
* Project: CMSIS DSP Library
* Title: arm_naive_gaussian_bayes_predict_f32
* Description: Naive Gaussian Bayesian Estimator
*
*
* Target Processor: Cortex-M and Cortex-A cores
* -------------------------------------------------------------------- */
/*
* Copyright (C) 2010-2019 ARM Limited or its affiliates. All rights reserved.
*
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the License); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an AS IS BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "arm_math.h"
#include <limits.h>
#include <math.h>
#define PI_F 3.1415926535897932384626433832795f
#define DPI_F (2*3.1415926535897932384626433832795f)
/**
* @addtogroup groupBayes
* @{
*/
#if defined(ARM_MATH_NEON)
#include "NEMath.h"
/**
* @brief Naive Gaussian Bayesian Estimator
*
* @param[in] *S points to a naive bayes instance structure
* @param[in] *in points to the elements of the input vector.
* @param[in] *pBuffer points to a buffer of length numberOfClasses
* @return The predicted class
*
*/
uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S,
const float32_t * in,
float32_t *pBuffer)
{
int nbClass;
int nbDim;
const float32_t *pPrior = S->classPriors;
const float32_t *pTheta = S->theta;
const float32_t *pSigma = S->sigma;
const float32_t *pTheta1 = S->theta + S->vectorDimension;
const float32_t *pSigma1 = S->sigma + S->vectorDimension;
float32_t *buffer = pBuffer;
const float32_t *pIn=in;
float32_t result;
float32_t sigma,sigma1;
float32_t tmp,tmp1;
uint32_t index;
uint32_t vecBlkCnt;
uint32_t classBlkCnt;
float32x4_t epsilonV;
float32x4_t sigmaV,sigmaV1;
float32x4_t tmpV,tmpVb,tmpV1;
float32x2_t tmpV2;
float32x4_t thetaV,thetaV1;
float32x4_t inV;
epsilonV = vdupq_n_f32(S->epsilon);
classBlkCnt = S->numberOfClasses >> 1;
while(classBlkCnt > 0)
{
pIn = in;
tmp = log(*pPrior++);
tmp1 = log(*pPrior++);
tmpV = vdupq_n_f32(0.0);
tmpV1 = vdupq_n_f32(0.0);
vecBlkCnt = S->vectorDimension >> 2;
while(vecBlkCnt > 0)
{
sigmaV = vld1q_f32(pSigma);
thetaV = vld1q_f32(pTheta);
sigmaV1 = vld1q_f32(pSigma1);
thetaV1 = vld1q_f32(pTheta1);
inV = vld1q_f32(pIn);
sigmaV = vaddq_f32(sigmaV, epsilonV);
sigmaV1 = vaddq_f32(sigmaV1, epsilonV);
tmpVb = vmulq_n_f32(sigmaV,DPI_F);
tmpVb = vlogq_f32(tmpVb);
tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5);
tmpVb = vmulq_n_f32(sigmaV1,DPI_F);
tmpVb = vlogq_f32(tmpVb);
tmpV1 = vmlsq_n_f32(tmpV1,tmpVb,0.5);
tmpVb = vsubq_f32(inV,thetaV);
tmpVb = vmulq_f32(tmpVb,tmpVb);
tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV));
tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5);
tmpVb = vsubq_f32(inV,thetaV1);
tmpVb = vmulq_f32(tmpVb,tmpVb);
tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV1));
tmpV1 = vmlsq_n_f32(tmpV1,tmpVb,0.5);
pIn += 4;
pTheta += 4;
pSigma += 4;
pTheta1 += 4;
pSigma1 += 4;
vecBlkCnt--;
}
tmpV2 = vpadd_f32(vget_low_f32(tmpV),vget_high_f32(tmpV));
tmp += tmpV2[0] + tmpV2[1];
tmpV2 = vpadd_f32(vget_low_f32(tmpV1),vget_high_f32(tmpV1));
tmp1 += tmpV2[0] + tmpV2[1];
vecBlkCnt = S->vectorDimension & 3;
while(vecBlkCnt > 0)
{
sigma = *pSigma + S->epsilon;
sigma1 = *pSigma1 + S->epsilon;
tmp -= 0.5*log(2.0 * PI_F * sigma);
tmp -= 0.5*(*pIn - *pTheta) * (*pIn - *pTheta) / sigma;
tmp1 -= 0.5*log(2.0 * PI_F * sigma1);
tmp1 -= 0.5*(*pIn - *pTheta1) * (*pIn - *pTheta1) / sigma1;
pIn++;
pTheta++;
pSigma++;
pTheta1++;
pSigma1++;
vecBlkCnt--;
}
*buffer++ = tmp;
*buffer++ = tmp1;
pSigma += S->vectorDimension;
pTheta += S->vectorDimension;
pSigma1 += S->vectorDimension;
pTheta1 += S->vectorDimension;
classBlkCnt--;
}
classBlkCnt = S->numberOfClasses & 1;
while(classBlkCnt > 0)
{
pIn = in;
tmp = log(*pPrior++);
tmpV = vdupq_n_f32(0.0);
vecBlkCnt = S->vectorDimension >> 2;
while(vecBlkCnt > 0)
{
sigmaV = vld1q_f32(pSigma);
thetaV = vld1q_f32(pTheta);
inV = vld1q_f32(pIn);
sigmaV = vaddq_f32(sigmaV, epsilonV);
tmpVb = vmulq_n_f32(sigmaV,DPI_F);
tmpVb = vlogq_f32(tmpVb);
tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5);
tmpVb = vsubq_f32(inV,thetaV);
tmpVb = vmulq_f32(tmpVb,tmpVb);
tmpVb = vmulq_f32(tmpVb, vinvq_f32(sigmaV));
tmpV = vmlsq_n_f32(tmpV,tmpVb,0.5);
pIn += 4;
pTheta += 4;
pSigma += 4;
vecBlkCnt--;
}
tmpV2 = vpadd_f32(vget_low_f32(tmpV),vget_high_f32(tmpV));
tmp += tmpV2[0] + tmpV2[1];
vecBlkCnt = S->vectorDimension & 3;
while(vecBlkCnt > 0)
{
sigma = *pSigma + S->epsilon;
tmp -= 0.5*log(2.0 * PI_F * sigma);
tmp -= 0.5*(*pIn - *pTheta) * (*pIn - *pTheta) / sigma;
pIn++;
pTheta++;
pSigma++;
vecBlkCnt--;
}
*buffer++ = tmp;
classBlkCnt--;
}
arm_max_f32(pBuffer,S->numberOfClasses,&result,&index);
return(index);
}
#else
/**
* @brief Naive Gaussian Bayesian Estimator
*
* @param[in] *S points to a naive bayes instance structure
* @param[in] *in points to the elements of the input vector.
* @param[in] *pBuffer points to a buffer of length numberOfClasses
* @return The predicted class
*
*/
uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_instance_f32 *S,
const float32_t * in,
float32_t *pBuffer)
{
int nbClass;
int nbDim;
const float32_t *pPrior = S->classPriors;
const float32_t *pTheta = S->theta;
const float32_t *pSigma = S->sigma;
float32_t *buffer = pBuffer;
const float32_t *pIn=in;
float32_t result;
float32_t sigma;
float32_t tmp;
float32_t acc1,acc2;
uint32_t index;
pTheta=S->theta;
pSigma=S->sigma;
for(nbClass = 0; nbClass < S->numberOfClasses; nbClass++)
{
pIn = in;
tmp = log(*pPrior);
acc1 = 0;
acc2 = 0;
for(nbDim = 0; nbDim < S->vectorDimension; nbDim++)
{
sigma = *pSigma + S->epsilon;
acc1 += log(2.0 * PI_F * sigma);
acc2 += (*pIn - *pTheta) * (*pIn - *pTheta) / sigma;
pIn++;
pTheta++;
pSigma++;
}
tmp = -0.5 * acc1;
tmp -= 0.5 * acc2;
*buffer = tmp + log(*pPrior++);
buffer++;
}
arm_max_f32(pBuffer,S->numberOfClasses,&result,&index);
return(index);
}
#endif
/**
* @} end of groupBayes group
*/