#include "app_task.h" #include #include #include "bsp.h" #include "elog.h" #include "finsh.h" #include "shell.h" #include "cpuusage.h" #include "delay_conf.h" #include "utils.h" #ifdef __CC_ARM extern int Image$$RW_IRAM1$$ZI$$Limit; #elif __ICCARM__ #pragma section="HEAP" #else extern int __bss_end; #endif #define log_a(...) elog_a("main.test.a", __VA_ARGS__) #define log_e(...) elog_e("main.test.e", __VA_ARGS__) #define log_w(...) elog_w("main.test.w", __VA_ARGS__) #define log_i(...) elog_i("main.test.i", __VA_ARGS__) #define log_d(...) elog_d("main.test.d", __VA_ARGS__) #define log_v(...) elog_v("main.test.v", __VA_ARGS__) #define thread_sys_monitor_prio 30 ALIGN(RT_ALIGN_SIZE) static rt_uint8_t thread_sys_monitor_stack[512]; struct rt_thread thread_sys_monitor; static void test_elog(void); static void rtt_user_assert_hook(const char* ex, const char* func, rt_size_t line); static void elog_user_assert_hook(const char* ex, const char* func, size_t line); static rt_err_t exception_hook(void *context); /** * System monitor thread. * * @param parameter parameter */ void thread_entry_sys_monitor(void* parameter) { while (1) { if(get_system_status() == SYSTEM_STATUS_RUN){ /* elog test */ test_elog(); LED_RUN_ON; rt_thread_delay(DELAY_SYS_RUN_LED_ON); LED_RUN_OFF; rt_thread_delay(DELAY_SYS_RUN_LED_OFF); } else if (get_system_status() == SYSTEM_STATUS_INIT){ LED_RUN_ON; rt_thread_delay(DELAY_SYS_INIT_LED_ON); LED_RUN_OFF; rt_thread_delay(DELAY_SYS_INIT_LED_OFF); } else if (get_system_status() == SYSTEM_STATUS_FAULT){ LED_RUN_ON; rt_thread_delay(DELAY_SYS_FAULT_LED_ON); LED_RUN_OFF; rt_thread_delay(DELAY_SYS_FAULT_LED_OFF); } IWDG_Feed(); } } /** * Elog demo */ static void test_elog(void) { log_a("Hello EasyLogger!"); log_e("Hello EasyLogger!"); log_w("Hello EasyLogger!"); log_i("Hello EasyLogger!"); log_d("Hello EasyLogger!"); log_v("Hello EasyLogger!"); //elog_raw("Hello EasyLogger!"); } /** * System initialization thread. * * @param parameter parameter */ void sys_init_thread(void* parameter){ set_system_status(SYSTEM_STATUS_INIT); /* EasyLogger initialization */ if (elog_init() == ELOG_NO_ERR) { /* set enabled format */ elog_set_fmt(ELOG_FMT_LVL | ELOG_FMT_TAG | ELOG_FMT_TIME /*| ELOG_FMT_P_INFO*/ | ELOG_FMT_T_INFO | ELOG_FMT_DIR /*| ELOG_FMT_FUNC*/ | ELOG_FMT_LINE); /* set EasyLogger assert hook */ elog_assert_set_hook(elog_user_assert_hook); /* set hardware exception hook */ rt_hw_exception_install(exception_hook); /* set RT-Thread assert hook */ rt_assert_set_hook(rtt_user_assert_hook); /* initialize OK and switch to running status */ set_system_status(SYSTEM_STATUS_RUN); } else { /* initialize fail and switch to fault status */ set_system_status(SYSTEM_STATUS_FAULT); } rt_thread_delete(rt_thread_self()); } static void elog_user_assert_hook(const char* ex, const char* func, size_t line) { elog_output_lock_enabled(false); // elog_flash_lock_enabled(false); elog_a("elog", "(%s) has assert failed at %s:%ld.", ex, func, line); // elog_flash_flush(); while(1); } static void rtt_user_assert_hook(const char* ex, const char* func, rt_size_t line) { elog_output_lock_enabled(false); // elog_flash_lock_enabled(false); elog_a("rtt", "(%s) has assert failed at %s:%ld.\n", ex, func, line); // elog_flash_flush(); while(1); } static rt_err_t exception_hook(void *context) { struct exception_stack_frame { rt_uint32_t r0; rt_uint32_t r1; rt_uint32_t r2; rt_uint32_t r3; rt_uint32_t r12; rt_uint32_t lr; rt_uint32_t pc; rt_uint32_t psr; }; struct exception_stack_frame *exception_stack = (struct exception_stack_frame *) context; elog_output_lock_enabled(false); //elog_flash_lock_enabled(false); elog_e("hw_fault", "psr: 0x%08x", exception_stack->psr); elog_e("hw_fault", " pc: 0x%08x", exception_stack->pc); elog_e("hw_fault", " lr: 0x%08x", exception_stack->lr); elog_e("hw_fault", "r12: 0x%08x", exception_stack->r12); elog_e("hw_fault", "r03: 0x%08x", exception_stack->r3); elog_e("hw_fault", "r02: 0x%08x", exception_stack->r2); elog_e("hw_fault", "r01: 0x%08x", exception_stack->r1); elog_e("hw_fault", "r00: 0x%08x", exception_stack->r0); elog_e("hw_fault", "hard fault on thread: %s", rt_thread_self()->name); //elog_flash_flush(); return RT_EOK; } int rt_application_init(void) { rt_thread_t init_thread = NULL; rt_thread_init(&thread_sys_monitor, "sys_monitor", thread_entry_sys_monitor, RT_NULL, thread_sys_monitor_stack, sizeof(thread_sys_monitor_stack), thread_sys_monitor_prio, 5); rt_thread_startup(&thread_sys_monitor); init_thread = rt_thread_create("sys init", sys_init_thread, NULL, 512, 10, 10); if (init_thread != NULL) { rt_thread_startup(init_thread); } return 0; } /** * This function will startup RT-Thread RTOS. */ void rtthread_startup(void) { /* init board */ rt_hw_board_init(); /* show version */ rt_show_version(); /* init tick */ rt_system_tick_init(); /* init kernel object */ rt_system_object_init(); /* init timer system */ rt_system_timer_init(); #ifdef RT_USING_HEAP #ifdef __CC_ARM rt_system_heap_init((void*)&Image$$RW_IRAM1$$ZI$$Limit, (void*)STM32_SRAM_END); #elif __ICCARM__ rt_system_heap_init(__segment_end("HEAP"), (void*)STM32_SRAM_END); #else /* init memory system */ rt_system_heap_init((void*)&__bss_end, (void*)STM32_SRAM_END); #endif #endif /* init scheduler system */ rt_system_scheduler_init(); /* initialize timer */ rt_system_timer_init(); /* init timer thread */ rt_system_timer_thread_init(); /* Add CPU usage to system */ cpu_usage_init(); #ifdef RT_USING_COMPONENTS_INIT /* initialization RT-Thread Components */ rt_components_init(); #endif #ifdef RT_USING_FINSH /* init finsh */ finsh_system_init(); finsh_set_device(RT_CONSOLE_DEVICE_NAME); #endif #ifdef RT_USING_COMPONENTS_INIT /* initialization RT-Thread Components */ rt_components_init(); #endif /* init application */ rt_application_init(); /* init idle thread */ rt_thread_idle_init(); /* start scheduler */ rt_system_scheduler_start(); /* never reach here */ return; }