/** ****************************************************************************** * @file main.c * @author MCU Application Team * @brief Main program body ****************************************************************************** * @attention * *

© Copyright (c) 2023 Puya Semiconductor Co. * All rights reserved.

* * This software component is licensed by Puya under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "main.h" /* Private define ------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ TIM_HandleTypeDef TimHandle; TIM_OC_InitTypeDef sConfig1,sConfig2,sConfig3; uint32_t temp; __IO uint32_t uwStep = 0; /* Private user code ---------------------------------------------------------*/ /* Private macro -------------------------------------------------------------*/ /* Private function prototypes -----------------------------------------------*/ static void APP_SystemClockConfig(void); /** * @brief Main program * @retval int */ int main(void) { /* Reset of all peripherals, Initializes the Systick */ HAL_Init(); /* Configure Systemclock */ APP_SystemClockConfig(); /* TIM configuration */ TimHandle.Instance = TIM1; /* Select TIM1 */ TimHandle.Init.Period = 1000 - 1; /* Auto reload value:1000-1 */ TimHandle.Init.Prescaler = 1 - 1; /* Prescaler:1-1 */ TimHandle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; /* Clock division: tDTS=tCK_INT */ TimHandle.Init.CounterMode = TIM_COUNTERMODE_UP; /* CounterMode:Up */ TimHandle.Init.RepetitionCounter = 1 - 1; /* repetition counter value:1-1 */ TimHandle.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE; /* TIM1_ARR register is not buffered */ /* Initialize TIM1 */ if (HAL_TIM_Base_Init(&TimHandle) != HAL_OK) { APP_ErrorHandler(); } /* PWM chanle configuration */ sConfig1.OCMode = TIM_OCMODE_TIMING; /* OCMode:Frozen */ sConfig1.OCPolarity = TIM_OCPOLARITY_HIGH; /* Compare output polarity: HIGH */ sConfig1.OCNPolarity = TIM_OCNPOLARITY_HIGH; /* Compare complementary output polarity: HIGH */ sConfig1.OCIdleState = TIM_OCIDLESTATE_RESET; /* Output Idle state: LOW */ sConfig1.OCNIdleState = TIM_OCNIDLESTATE_RESET; /* Complementary output Idle state: LOW */ sConfig1.OCFastMode = TIM_OCFAST_DISABLE; /* Output Compare fast disable */ /* Set the pulse value for channel 1:500 */ sConfig1.Pulse = 500 - 1; /* Configure TIM1_CH1 */ if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig1, TIM_CHANNEL_1) != HAL_OK) { APP_ErrorHandler(); } sConfig2 = sConfig1; /* Set the pulse value for channel 1 : 250-1 */ sConfig2.Pulse = 250 - 1; /* Configure TIM1_CH2 */ if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig2, TIM_CHANNEL_2) != HAL_OK) { APP_ErrorHandler(); } sConfig3 = sConfig1; /* Set the pulse value for channel 1 : 125-1 */ sConfig3.Pulse = 125 - 1; /* Configure TIM1_CH3 */ if (HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig3, TIM_CHANNEL_3) != HAL_OK) { APP_ErrorHandler(); } /* Configure the TIM commutation event: set COMG bit by software */ HAL_TIMEx_ConfigCommutEvent_IT(&TimHandle, TIM_TS_NONE, TIM_COMMUTATION_SOFTWARE); /* Start all channles */ if (HAL_TIM_OC_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { APP_ErrorHandler(); } if (HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_1) != HAL_OK) { APP_ErrorHandler(); } if (HAL_TIM_OC_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { APP_ErrorHandler(); } if (HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_2) != HAL_OK) { APP_ErrorHandler(); } if (HAL_TIM_OC_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { APP_ErrorHandler(); } if (HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_3) != HAL_OK) { APP_ErrorHandler(); } /* Infinite loop */ while (1) { } } /** * @brief Commutation event callback * @param htim:TIM handle * @retval None */ void HAL_TIMEx_CommutCallback(TIM_HandleTypeDef *htim) { if (uwStep == 0) { /* Step 1 Configuration */ /* Set channle 1 mode: PWM1 */ sConfig1.OCMode = TIM_OCMODE_PWM1; HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig1, TIM_CHANNEL_1); /* Start channel 1 */ HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1); /* Stop the channel 1N */ HAL_TIMEx_OCN_Stop(&TimHandle, TIM_CHANNEL_1); /* Set channle 3 mode: PWM1 */ sConfig3.OCMode = TIM_OCMODE_PWM1; HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig3, TIM_CHANNEL_3); /* Start channel 3N */ HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_3); /* Stop channle 3 */ HAL_TIM_PWM_Stop(&TimHandle, TIM_CHANNEL_3); /* Stop channle 2 */ HAL_TIM_OC_Stop(&TimHandle, TIM_CHANNEL_2); /* Stop channle 2N */ HAL_TIMEx_OCN_Stop(&TimHandle, TIM_CHANNEL_2); uwStep = 1; } else if (uwStep == 1) { /* Step 2 Configuration */ /* Set channle 2 mode: PWM1 */ sConfig2.OCMode = TIM_OCMODE_PWM1; HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig2, TIM_CHANNEL_2); /* Start channel 2N */ HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_2); /* Stop channel 3N */ HAL_TIMEx_OCN_Stop(&TimHandle, TIM_CHANNEL_3); uwStep++; } else if (uwStep == 2) { /* Step 3 Configuration */ /* Set channle 3 mode: PWM1 */ sConfig3.OCMode = TIM_OCMODE_PWM1; HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig3, TIM_CHANNEL_3); /* Start channel 3 */ HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_3); /* Stop channel 1 */ HAL_TIM_OC_Stop(&TimHandle, TIM_CHANNEL_1); uwStep++; } else if (uwStep == 3) { /* Step 4 Configuration */ /* Stop channel 2N */ HAL_TIMEx_OCN_Stop(&TimHandle, TIM_CHANNEL_2); /* Set channle 1 mode: PWM1 */ sConfig1.OCMode = TIM_OCMODE_PWM1; HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig1, TIM_CHANNEL_1); /* Start channel 1N */ HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_1); uwStep++; } else if (uwStep == 4) { /* Step 5 Configuration */ /* Stop channel 3 */ HAL_TIM_OC_Stop(&TimHandle, TIM_CHANNEL_3); /* Set channle 2 mode: PWM1 */ sConfig2.OCMode = TIM_OCMODE_PWM1; HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig2, TIM_CHANNEL_2); /* Start channel 2 */ HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_2); uwStep++; } else if (uwStep == 5) { /* Step 6 Configuration */ /* Set channle 3 mode: PWM1 */ sConfig3.OCMode = TIM_OCMODE_PWM1; HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig3, TIM_CHANNEL_3); /* Start channel 3N */ HAL_TIMEx_OCN_Start(&TimHandle, TIM_CHANNEL_3); /* Stop channel channel 1N */ HAL_TIMEx_OCN_Stop(&TimHandle, TIM_CHANNEL_1); uwStep++; } else { /* Step 1 Configuration */ /* Set channle 1 mode: PWM1 */ sConfig1.OCMode = TIM_OCMODE_PWM1; HAL_TIM_PWM_ConfigChannel(&TimHandle, &sConfig1, TIM_CHANNEL_1); /* Start channel 1 */ HAL_TIM_PWM_Start(&TimHandle, TIM_CHANNEL_1); /* Stop channel 2 */ HAL_TIM_OC_Stop(&TimHandle, TIM_CHANNEL_2); uwStep = 1; } } /** * @brief Configure systemclock * @param None * @retval None */ static void APP_SystemClockConfig(void) { RCC_OscInitTypeDef OscInitstruct = {0}; RCC_ClkInitTypeDef ClkInitstruct = {0}; OscInitstruct.OscillatorType = RCC_OSCILLATORTYPE_HSE | RCC_OSCILLATORTYPE_HSI | RCC_OSCILLATORTYPE_LSE | RCC_OSCILLATORTYPE_LSI | RCC_OSCILLATORTYPE_HSI48M; OscInitstruct.HSEState = RCC_HSE_OFF; /* HSE OFF */ /* OscInitstruct.HSEFreq = RCC_HSE_16_32MHz; */ /* HSE clock range 16~32MHz */ OscInitstruct.HSI48MState = RCC_HSI48M_OFF; /* Disable HSI48M clock */ OscInitstruct.HSIState = RCC_HSI_ON; /* HSI ON */ OscInitstruct.LSEState = RCC_LSE_OFF; /* LSE OFF */ /* OscInitstruct.LSEDriver = RCC_LSEDRIVE_HIGH; */ /* LSE high drive capability */ OscInitstruct.LSIState = RCC_LSI_OFF; /* LSI OFF */ OscInitstruct.PLL.PLLState = RCC_PLL_OFF; /* PLL OFF */ /* OscInitstruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; */ /* HSE oscillator clock selected as PLL clock entry */ /* OscInitstruct.PLL.PLLMUL = RCC_PLL_MUL6; */ /* PLLVCO = PLL clock entry x 6 */ /* Initialize the RCC Oscillators */ if(HAL_RCC_OscConfig(&OscInitstruct) != HAL_OK) { APP_ErrorHandler(); } ClkInitstruct.ClockType = RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; ClkInitstruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI; /* Select HSI as system clock */ ClkInitstruct.AHBCLKDivider = RCC_SYSCLK_DIV1; /* SYSCLK not divided: HCLK=SYSCLK */ ClkInitstruct.APB1CLKDivider = RCC_HCLK_DIV1; /* HCLK not divided: PCLK1=HCLK */ ClkInitstruct.APB2CLKDivider = RCC_HCLK_DIV2; /* HCLK divided by 2: PCLK2=HCLK/2 */ /* Set clock source */ if(HAL_RCC_ClockConfig(&ClkInitstruct, FLASH_LATENCY_0) != HAL_OK) { APP_ErrorHandler(); } } /** * @brief Error handling function * @param None * @retval None */ void APP_ErrorHandler(void) { /* Infinite loop */ while (1) { } } #ifdef USE_FULL_ASSERT /** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file:Pointer to the source file name * @param line:assert_param error line source number * @retval None */ void assert_failed(uint8_t *file, uint32_t line) { /* User can add His own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */ /* Infinite loop */ while (1) { } } #endif /* USE_FULL_ASSERT */ /************************ (C) COPYRIGHT Puya *****END OF FILE******************/