/** ****************************************************************************** * @file py32f403_ll_rcc.c * @author MCU Application Team * @brief RCC LL module driver. ****************************************************************************** * @attention * *

© Copyright (c) 2023 Puya Semiconductor Co. * All rights reserved.

* * This software component is licensed by Puya under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** * @attention * *

© Copyright (c) 2016 STMicroelectronics. * All rights reserved.

* * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */ #if defined(USE_FULL_LL_DRIVER) /* Includes ------------------------------------------------------------------*/ #include "py32f403_ll_rcc.h" #ifdef USE_FULL_ASSERT #include "py32_assert.h" #else #define assert_param(expr) ((void)0U) #endif /** @addtogroup PY32F403_LL_Driver * @{ */ #if defined(RCC) /** @addtogroup RCC_LL * @{ */ /* Private types -------------------------------------------------------------*/ /* Private variables ---------------------------------------------------------*/ /* Private constants ---------------------------------------------------------*/ /* Private macros ------------------------------------------------------------*/ /** @addtogroup RCC_LL_Private_Macros * @{ */ #define IS_LL_RCC_MCO_CLKSOURCE(__VALUE__) (((__VALUE__) == LL_RCC_MCO_CLKSOURCE)) /** * @} */ /* Private function prototypes -----------------------------------------------*/ /** @defgroup RCC_LL_Private_Functions RCC Private functions * @{ */ uint32_t RCC_GetSystemClockFreq(void); uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency); uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency); uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency); #if defined(RCC_PLL_SUPPORT) uint32_t RCC_PLL_GetFreqDomain_SYS(void); #endif /** * @} */ /* Exported functions --------------------------------------------------------*/ /** @addtogroup RCC_LL_Exported_Functions * @{ */ /** @addtogroup RCC_LL_EF_Init * @{ */ /** * @brief Reset the RCC clock configuration to the default reset state. * @note The default reset state of the clock configuration is given below: * - HSI ON and used as system clock source * - HSE and PLL OFF * - AHB and APB1 prescaler set to 1. * - CSS, MCO OFF * - All interrupts disabled * @note This function does not modify the configuration of the * - Peripheral clocks * - LSI, LSE and RTC clocks * @retval An ErrorStatus enumeration value: * - SUCCESS: RCC registers are de-initialized * - ERROR: not applicable */ ErrorStatus LL_RCC_DeInit(void) { uint32_t vl_mask; /* Set HSION bit and wait for HSI READY bit */ LL_RCC_HSI_Enable(); while (LL_RCC_HSI_IsReady() != 1U) {} /* Set HSITRIM bits to reset value*/ LL_RCC_HSI_SetCalibTrimming(0x10U); /* Reset whole CFGR register, but keep HSI as the system clock source and do not modify the clock configuration of PLL, ADC, and USB */ CLEAR_BIT(RCC->CFGR, ~(RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL | \ RCC_CFGR_ADCPRE | RCC_CFGR_USBPRE)); /* Wait till SYSCLK is HSI */ while (LL_RCC_GetSysClkSource() != LL_RCC_SYS_CLKSOURCE_STATUS_HSI) {} /* Reset whole CR register but HSI in 2 steps in case HSEBYP is set */ LL_RCC_WriteReg(CR, RCC_CR_HSION); while (LL_RCC_HSE_IsReady() != 0U) {} LL_RCC_WriteReg(CR, RCC_CR_HSION); #if defined(RCC_PLL_SUPPORT) /* Wait for PLL READY bit to be reset */ while (LL_RCC_PLL_IsReady() != 0U) {} /* Reset configuration of PLL */ CLEAR_BIT(RCC->CFGR, (RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL)); #endif /* Disable all interrupts */ LL_RCC_WriteReg(CIR, 0x00000000U); /* Clear all interrupts flags */ vl_mask = RCC_CIR_LSIRDYC | RCC_CIR_LSERDYC | RCC_CIR_HSIRDYC | RCC_CIR_HSERDYC | \ RCC_CIR_PLLRDYC | RCC_CIR_HSI48RDYC | RCC_CIR_CSSC; LL_RCC_WriteReg(CIR, vl_mask); /* Clear reset flags */ LL_RCC_ClearResetFlags(); return SUCCESS; } /** * @} */ /** @addtogroup RCC_LL_EF_Get_Freq * @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks * and different peripheral clocks available on the device. * @note If SYSCLK source is HSI, function returns values based on HSI_VALUE(**) * @note If SYSCLK source is HSE, function returns values based on HSE_VALUE(***) * @note If SYSCLK source is PLL, function returns values based on HSE_VALUE(***) * or HSI_VALUE(**) multiplied/divided by the PLL factors. * @note (**) HSI_VALUE is a constant defined in this file (default value * 8 MHz) but the real value may vary depending on the variations * in voltage and temperature. * @note (***) HSE_VALUE is a constant defined in this file (default value * 24 MHz), user has to ensure that HSE_VALUE is same as the real * frequency of the crystal used. Otherwise, this function may * have wrong result. * @note The result of this function could be incorrect when using fractional * value for HSE crystal. * @note This function can be used by the user application to compute the * baud-rate for the communication peripherals or configure other parameters. * @{ */ /** * @brief Return the frequencies of different on chip clocks; System, AHB, APB1 and APB2 buses clocks * @note Each time SYSCLK, HCLK, PCLK1 and/or PCLK2 clock changes, this function * must be called to update structure fields. Otherwise, any * configuration based on this function will be incorrect. * @param RCC_Clocks pointer to a @ref LL_RCC_ClocksTypeDef structure which will hold the clocks frequencies * @retval None */ void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks) { /* Get SYSCLK frequency */ RCC_Clocks->SYSCLK_Frequency = RCC_GetSystemClockFreq(); /* HCLK clock frequency */ RCC_Clocks->HCLK_Frequency = RCC_GetHCLKClockFreq(RCC_Clocks->SYSCLK_Frequency); /* PCLK1 clock frequency */ RCC_Clocks->PCLK1_Frequency = RCC_GetPCLK1ClockFreq(RCC_Clocks->HCLK_Frequency); /* PCLK2 clock frequency */ RCC_Clocks->PCLK2_Frequency = RCC_GetPCLK2ClockFreq(RCC_Clocks->HCLK_Frequency); } /** * @brief Return MCO clock frequency * @param MCOx This parameter can be one of the following values: * @arg @ref LL_RCC_MCO_CLKSOURCE * @retval MCO clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillator (HSE, LSI or LSE) is not ready * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected */ uint32_t LL_RCC_GetMCOClockFreq(uint32_t MCOx) { uint32_t mco_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* Check parameter */ assert_param(IS_LL_RCC_MCO_CLKSOURCE(MCOx)); switch (LL_RCC_GetMCOClockSource(MCOx)) { #if defined(RCC_LSE_SUPPORT) case LL_RCC_MCOSOURCE_LSE: /* MCO Clock is LSE */ if (LL_RCC_LSE_IsReady() == 1U) { mco_frequency = LSE_VALUE; } break; #endif case LL_RCC_MCOSOURCE_LSI: /* MCO Clock is LSI */ if (LL_RCC_LSI_IsReady() == 1U) { mco_frequency = LSI_VALUE; } break; case LL_RCC_MCOSOURCE_HSI48M: /* MCO Clock is HSI48M */ mco_frequency = HSI48_VALUE; break; case LL_RCC_MCOSOURCE_SYSCLK: /* MCO Clock is SYSCLK */ mco_frequency = SystemCoreClock; break; case LL_RCC_MCOSOURCE_HSI: /* MCO Clock is HSI */ mco_frequency = HSI_VALUE; break; case LL_RCC_MCOSOURCE_HSE: /* MCO Clock is HSE */ if (LL_RCC_HSE_IsReady() == 1U) { mco_frequency = HSE_VALUE; } break; #if defined(RCC_PLL_SUPPORT) case LL_RCC_MCOSOURCE_PLL: /* MCO Clock is PLLCLK */ mco_frequency = RCC_PLL_GetFreqDomain_SYS(); break; #endif case LL_RCC_MCOSOURCE_NOCLOCK: /* No clock used as MCO clock source */ default: mco_frequency = LL_RCC_PERIPH_FREQUENCY_NA; return mco_frequency; } mco_frequency = mco_frequency / (1U << (LL_RCC_GetMCODiv(MCOx) >> RCC_CFGR1_MCOPRE_Pos)); return mco_frequency; } #if defined(RCC_BDCR_RTCSEL) /** * @brief Return RTC clock frequency * @retval RTC clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (LSI, LSE or HSE) are not ready * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected */ uint32_t LL_RCC_GetRTCClockFreq(void) { uint32_t rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* RTCCLK clock frequency */ switch (LL_RCC_GetRTCClockSource()) { #if defined(RCC_LSE_SUPPORT) case LL_RCC_RTC_CLKSOURCE_LSE: /* LSE clock used as RTC clock source */ if (LL_RCC_LSE_IsReady() == 1U) { rtc_frequency = LSE_VALUE; } break; #endif case LL_RCC_RTC_CLKSOURCE_LSI: /* LSI clock used as RTC clock source */ if (LL_RCC_LSI_IsReady() == 1U) { rtc_frequency = LSI_VALUE; } break; case LL_RCC_RTC_CLKSOURCE_HSE_DIV128: /* HSE/128 clock used as RTC clock source */ if (LL_RCC_HSE_IsReady() == 1U) { rtc_frequency = HSE_VALUE / 128U; } break; case LL_RCC_RTC_CLKSOURCE_NONE: /* No clock used as RTC clock source */ default: rtc_frequency = LL_RCC_PERIPH_FREQUENCY_NA; break; } return rtc_frequency; } #endif /** * @brief Return USB clock frequency * @retval USB clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (PLL or HSI48) are not ready * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected */ uint32_t LL_RCC_GetUSBClockFreq(void) { uint32_t usb_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* RTCCLK clock frequency */ switch (LL_RCC_GetUSBClockSource()) { #if defined(RCC_PLL_SUPPORT) case LL_RCC_USB_CLKSOURCE_PLL: /* PLL used as USB clock source */ if (LL_RCC_HSE_IsReady() == 1U) { switch (LL_RCC_GetUSBPrescaler()) { case LL_RCC_USB_DIV_1P5: usb_frequency = RCC_PLL_GetFreqDomain_SYS() * 2U / 3U; break; case LL_RCC_USB_DIV_1: usb_frequency = RCC_PLL_GetFreqDomain_SYS(); break; case LL_RCC_USB_DIV_2P5: usb_frequency = RCC_PLL_GetFreqDomain_SYS() * 2U / 5U; break; case LL_RCC_USB_DIV_2: usb_frequency = RCC_PLL_GetFreqDomain_SYS() / 2U; break; case LL_RCC_USB_DIV_3: usb_frequency = RCC_PLL_GetFreqDomain_SYS() / 3U; break; case LL_RCC_USB_DIV_3P5: usb_frequency = RCC_PLL_GetFreqDomain_SYS() * 2U / 7U; break; case LL_RCC_USB_DIV_4: usb_frequency = RCC_PLL_GetFreqDomain_SYS() / 4U; break; default: { break; } } } break; #endif case LL_RCC_USB_CLKSOURCE_HSI48: /* HSI48 used as USB clock source */ usb_frequency = HSI48_VALUE; break; default: usb_frequency = LL_RCC_PERIPH_FREQUENCY_NA; break; } return usb_frequency; } #if defined(CANFD) /** * @brief Return CANFD clock frequency * @retval CANFD clock frequency (in Hz) * - @ref LL_RCC_PERIPH_FREQUENCY_NO indicates that oscillators (PLL or HSE) are not ready * - @ref LL_RCC_PERIPH_FREQUENCY_NA indicates that no clock source selected */ uint32_t LL_RCC_GetCANFDClockFreq(void) { uint32_t canfd_frequency = LL_RCC_PERIPH_FREQUENCY_NO; /* CANFD clock frequency */ switch (LL_RCC_GetCANFDClockSource()) { case LL_RCC_CANFD_CLKSOURCE_HSE: /* HSE clock used as CANFD clock source */ if (LL_RCC_HSE_IsReady() == 1U) { canfd_frequency = HSE_VALUE; } break; #if defined(RCC_PLL_SUPPORT) case LL_RCC_CANFD_CLKSOURCE_PLL: /* PLL used as CANFD clock source */ if (LL_RCC_PLL_IsReady() == 1U) { canfd_frequency = RCC_PLL_GetFreqDomain_SYS(); } break; case LL_RCC_CANFD_CLKSOURCE_PLL_DIV2: /* PLL/2 clock used as CANFD clock source */ if (LL_RCC_PLL_IsReady() == 1U) { canfd_frequency = RCC_PLL_GetFreqDomain_SYS() / 2U; } break; case LL_RCC_CANFD_CLKSOURCE_PLL_DIV3: /* PLL/3 clock used as CANFD clock source */ if (LL_RCC_PLL_IsReady() == 1U) { canfd_frequency = RCC_PLL_GetFreqDomain_SYS() / 3U; } break; case LL_RCC_CANFD_CLKSOURCE_PLL_DIV4: /* PLL/4 clock used as CANFD clock source */ if (LL_RCC_PLL_IsReady() == 1U) { canfd_frequency = RCC_PLL_GetFreqDomain_SYS() / 4U; } break; case LL_RCC_CANFD_CLKSOURCE_PLL_DIV5: /* PLL/5 clock used as CANFD clock source */ if (LL_RCC_PLL_IsReady() == 1U) { canfd_frequency = RCC_PLL_GetFreqDomain_SYS() / 5U; } break; case LL_RCC_CANFD_CLKSOURCE_PLL_DIV6: /* PLL/6 clock used as CANFD clock source */ if (LL_RCC_PLL_IsReady() == 1U) { canfd_frequency = RCC_PLL_GetFreqDomain_SYS() / 6U; } break; case LL_RCC_CANFD_CLKSOURCE_PLL_DIV7: /* PLL/7 clock used as CANFD clock source */ if (LL_RCC_PLL_IsReady() == 1U) { canfd_frequency = RCC_PLL_GetFreqDomain_SYS() / 7U; } break; case LL_RCC_CANFD_CLKSOURCE_PLL_DIV8: /* PLL/8 clock used as CANFD clock source */ if (LL_RCC_PLL_IsReady() == 1U) { canfd_frequency = RCC_PLL_GetFreqDomain_SYS() / 8U; } break; #endif default: canfd_frequency = LL_RCC_PERIPH_FREQUENCY_NA; break; } return canfd_frequency; } #endif /* CANFD */ /** * @brief Return ADC clock frequency * @retval ADC clock frequency (in Hz) */ uint32_t LL_RCC_GetADCClockFreq(void) { uint32_t adc_frequency = 0U; /* ADCCLK clock frequency */ switch (LL_RCC_GetADCClockSource()) { case LL_RCC_ADC_CLKSOURCE_PCLK2_DIV4: /* PCLK/4 clock selected as ADC clock */ adc_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())) / 4; break; case LL_RCC_ADC_CLKSOURCE_PCLK2_DIV6: /* PCLK/6 clock selected as ADC clock */ adc_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())) / 6; break; case LL_RCC_ADC_CLKSOURCE_PCLK2_DIV8: /* PCLK/8 clock selected as ADC clock */ adc_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())) / 8; break; case LL_RCC_ADC_CLKSOURCE_PCLK2_DIV12: /* PCLK/12 clock selected as ADC clock */ adc_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())) / 12; break; case LL_RCC_ADC_CLKSOURCE_PCLK2_DIV16: /* PCLK/16 clock selected as ADC clock */ adc_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())) / 16; break; case LL_RCC_ADC_CLKSOURCE_PCLK2_DIV2: /* PCLK/2 clock selected as ADC clock */ default: adc_frequency = RCC_GetPCLK2ClockFreq(RCC_GetHCLKClockFreq(RCC_GetSystemClockFreq())) / 2; break; } return adc_frequency; } /** * @} */ /** * @} */ /** @addtogroup RCC_LL_Private_Functions * @{ */ /** * @brief Return SYSTEM clock frequency * @retval SYSTEM clock frequency (in Hz) */ uint32_t RCC_GetSystemClockFreq(void) { uint32_t frequency; /* Get SYSCLK source -------------------------------------------------------*/ switch (LL_RCC_GetSysClkSource()) { case LL_RCC_SYS_CLKSOURCE_STATUS_HSE: /* HSE used as system clock source */ frequency = HSE_VALUE; break; #if defined(RCC_PLL_SUPPORT) case LL_RCC_SYS_CLKSOURCE_STATUS_PLL: /* PLL used as system clock source */ frequency = RCC_PLL_GetFreqDomain_SYS(); break; #endif case LL_RCC_SYS_CLKSOURCE_STATUS_HSI: /* HSI used as system clock source */ default: frequency = HSI_VALUE; break; } return frequency; } /** * @brief Return HCLK clock frequency * @param SYSCLK_Frequency SYSCLK clock frequency * @retval HCLK clock frequency (in Hz) */ uint32_t RCC_GetHCLKClockFreq(uint32_t SYSCLK_Frequency) { /* HCLK clock frequency */ return __LL_RCC_CALC_HCLK_FREQ(SYSCLK_Frequency, LL_RCC_GetAHBPrescaler()); } /** * @brief Return PCLK1 clock frequency * @param HCLK_Frequency HCLK clock frequency * @retval PCLK1 clock frequency (in Hz) */ uint32_t RCC_GetPCLK1ClockFreq(uint32_t HCLK_Frequency) { /* PCLK1 clock frequency */ return __LL_RCC_CALC_PCLK1_FREQ(HCLK_Frequency, LL_RCC_GetAPB1Prescaler()); } /** * @brief Return PCLK2 clock frequency * @param HCLK_Frequency HCLK clock frequency * @retval PCLK2 clock frequency (in Hz) */ uint32_t RCC_GetPCLK2ClockFreq(uint32_t HCLK_Frequency) { /* PCLK2 clock frequency */ return __LL_RCC_CALC_PCLK2_FREQ(HCLK_Frequency, LL_RCC_GetAPB2Prescaler()); } #if defined(RCC_PLL_SUPPORT) /** * @brief Return PLL clock frequency used for system domain * @retval PLL clock frequency (in Hz) */ uint32_t RCC_PLL_GetFreqDomain_SYS(void) { uint32_t pllinputfreq; uint32_t pllsource; pllsource = LL_RCC_PLL_GetMainSource(); switch (pllsource) { case LL_RCC_PLLSOURCE_HSE: /* HSE used as PLL clock source */ pllinputfreq = HSE_VALUE / ((LL_RCC_PLL_GetPrediv() >> RCC_CFGR_PLLXTPRE_Pos) + 1U); break; case LL_RCC_PLLSOURCE_HSI: /* HSI used as PLL clock source */ default: pllinputfreq = HSI_VALUE; break; } return __LL_RCC_CALC_PLLCLK_FREQ(pllinputfreq, LL_RCC_PLL_GetMulFactor()); } #endif /** * @} */ /** * @} */ #endif /* defined(RCC) */ /** * @} */ #endif /* USE_FULL_LL_DRIVER */ /************************ (C) COPYRIGHT Puya*****END OF FILE****/