You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2071 lines
68 KiB
C

/**
******************************************************************************
* @file py32f403_ll_rcc.h
* @author MCU Application Team
* @brief Header file of RCC LL module.
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2023 Puya Semiconductor Co.
* All rights reserved.</center></h2>
*
* This software component is licensed by Puya under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/* Define to prevent recursive inclusion -------------------------------------*/
#ifndef __PY32F403_LL_RCC_H
#define __PY32F403_LL_RCC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Includes ------------------------------------------------------------------*/
#include "py32f4xx.h"
/** @addtogroup PY32F403_LL_Driver
* @{
*/
#if defined(RCC)
/** @defgroup RCC_LL RCC
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup RCC_LL_Private_Variables RCC Private Variables
* @{
*/
/**
* @}
*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Private_Macros RCC Private Macros
* @{
*/
/**
* @}
*/
#endif /*USE_FULL_LL_DRIVER*/
/* Exported types ------------------------------------------------------------*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_Exported_Types RCC Exported Types
* @{
*/
/** @defgroup LL_ES_CLOCK_FREQ Clocks Frequency Structure
* @{
*/
/**
* @brief RCC Clocks Frequency Structure
*/
typedef struct
{
uint32_t SYSCLK_Frequency; /*!< SYSCLK clock frequency */
uint32_t HCLK_Frequency; /*!< HCLK clock frequency */
uint32_t PCLK1_Frequency; /*!< PCLK1 clock frequency */
uint32_t PCLK2_Frequency; /*!< PCLK2 clock frequency */
} LL_RCC_ClocksTypeDef;
/**
* @}
*/
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/* Exported constants --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Constants RCC Exported Constants
* @{
*/
/** @defgroup RCC_LL_EC_OSC_VALUES Oscillator Values adaptation
* @brief Defines used to adapt values of different oscillators
* @note These values could be modified in the user environment according to
* HW set-up.
* @{
*/
#if !defined (HSE_VALUE)
#define HSE_VALUE 24000000U /*!< Value of the HSE oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 8000000U /*!< Value of the HSI oscillator in Hz */
#endif /* HSI_VALUE */
#if defined(RCC_LSE_SUPPORT)
#if !defined (LSE_VALUE)
#define LSE_VALUE 32768U /*!< Value of the LSE oscillator in Hz */
#endif /* LSE_VALUE */
#endif
#if !defined (LSI_VALUE)
#define LSI_VALUE 40000U /*!< Value of the LSI oscillator in Hz */
#endif /* LSI_VALUE */
#if !defined (HSI48_VALUE)
#define HSI48_VALUE 48000000U /*!< Value of the HSI48 oscillator in Hz */
#endif /* HSI48_VALUE */
/**
* @}
*/
/** @defgroup RCC_LL_EC_CLEAR_FLAG Clear Flags Defines
* @brief Flags defines which can be used with LL_RCC_WriteReg function
* @{
*/
#define LL_RCC_CIR_LSIRDYC RCC_CIR_LSIRDYC /*!< LSI Ready Interrupt Clear */
#define LL_RCC_CIR_HSIRDYC RCC_CIR_HSIRDYC /*!< HSI Ready Interrupt Clear */
#define LL_RCC_CIR_HSERDYC RCC_CIR_HSERDYC /*!< HSE Ready Interrupt Clear */
#if defined(RCC_PLL_SUPPORT)
#define LL_RCC_CIR_PLLRDYC RCC_CIR_PLLRDYC /*!< PLL Ready Interrupt Clear */
#endif
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_CIR_LSERDYC RCC_CIR_LSERDYC /*!< LSE Ready Interrupt Clear */
#endif
#define LL_RCC_CIR_HSI48RDYC RCC_CIR_HSI48RDYC /*!< HSI48M Ready Interrupt Clear */
#define LL_RCC_CIR_CSSC RCC_CIR_CSSC /*!< Clock Security System Interrupt Clear */
/**
* @}
*/
/** @defgroup RCC_LL_EC_GET_FLAG Get Flags Defines
* @brief Flags defines which can be used with LL_RCC_ReadReg function
* @{
*/
#define LL_RCC_CIR_LSIRDYF RCC_CIR_LSIRDYF /*!< LSI Ready Interrupt flag */
#define LL_RCC_CIR_HSIRDYF RCC_CIR_HSIRDYF /*!< HSI Ready Interrupt flag */
#define LL_RCC_CIR_HSERDYF RCC_CIR_HSERDYF /*!< HSE Ready Interrupt flag */
#if defined(RCC_PLL_SUPPORT)
#define LL_RCC_CIR_PLLRDYF RCC_CIR_PLLRDYF /*!< PLL Ready Interrupt flag */
#endif
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_CIR_LSERDYF RCC_CIR_LSERDYF /*!< LSE Ready Interrupt flag */
#endif
#define LL_RCC_CIR_HSI48RDYF RCC_CIR_HSI48RDYF /*!< HSI48M Ready Interrupt flag */
#define LL_RCC_CIR_CSSF RCC_CIR_CSSF /*!< Clock Security System Interrupt flag */
#define LL_RCC_CSR_OBLRSTF RCC_CSR_OBLRSTF /*!< OBL reset flag */
#define LL_RCC_CSR_PINRSTF RCC_CSR_PINRSTF /*!< PIN reset flag */
#define LL_RCC_CSR_SFTRSTF RCC_CSR_SFTRSTF /*!< Software Reset flag */
#define LL_RCC_CSR_IWDGRSTF RCC_CSR_IWDGRSTF /*!< Independent Watchdog reset flag */
#if defined(WWDG)
#define LL_RCC_CSR_WWDGRSTF RCC_CSR_WWDGRSTF /*!< Window watchdog reset flag */
#endif
#define LL_RCC_CSR_PWRRSTF RCC_CSR_PWRRSTF /*!< POR/PDR reset flag */
#define LL_RCC_CSR_LPWRRSTF RCC_CSR_LPWRRSTF /*!< Low Power reset flag */
/**
* @}
*/
/** @defgroup RCC_LL_EC_IT IT Defines
* @brief IT defines which can be used with LL_RCC_ReadReg and LL_RCC_WriteReg functions
* @{
*/
#define LL_RCC_CIR_LSIRDYIE RCC_CIR_LSIRDYIE /*!< LSI Ready Interrupt Enable */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_CIR_LSERDYIE RCC_CIR_LSERDYIE /*!< LSE Ready Interrupt Enable */
#endif
#define LL_RCC_CIR_HSIRDYIE RCC_CIR_HSIRDYIE /*!< HSI Ready Interrupt Enable */
#define LL_RCC_CIR_HSERDYIE RCC_CIR_HSERDYIE /*!< HSE Ready Interrupt Enable */
#if defined(RCC_PLL_SUPPORT)
#define LL_RCC_CIR_PLLRDYIE RCC_CIR_PLLRDYIE /*!< PLL Ready Interrupt Enable */
#define LL_RCC_CIR_HSI48RDYIE RCC_CIR_HSI48RDYIE /*!< HSI48 Ready Interrupt Enable */
#endif
/**
* @}
*/
#if defined(RCC_LSE_SUPPORT)
/** @defgroup RCC_LL_EC_LSEDRIVE LSE oscillator drive capability
* @{
*/
#define LL_RCC_LSEDRIVE_LOW 0x00000000 /*!< Xtal mode low driving capability */
#define LL_RCC_LSEDRIVE_MEDIUM RCC_BDCR_LSEDRV_0 /*!< Xtal mode medium driving capability */
#define LL_RCC_LSEDRIVE_HIGH RCC_BDCR_LSEDRV_1 /*!< Xtal mode high driving capability */
#define LL_RCC_LSEDRIVE_VERY_HIGH RCC_BDCR_LSEDRV /*!< Xtal mode very high driving capability */
/**
* @}
*/
#endif
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE System clock switch
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_HSI RCC_CFGR_SW_HSI /*!< HSI selection as system clock */
#define LL_RCC_SYS_CLKSOURCE_HSE RCC_CFGR_SW_HSE /*!< HSE selection as system clock */
#if defined(RCC_PLL_SUPPORT)
#define LL_RCC_SYS_CLKSOURCE_PLL RCC_CFGR_SW_PLL /*!< PLL selection as system clock */
#endif
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYS_CLKSOURCE_STATUS System clock switch status
* @{
*/
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSI RCC_CFGR_SWS_HSI /*!< HSI used as system clock */
#define LL_RCC_SYS_CLKSOURCE_STATUS_HSE RCC_CFGR_SWS_HSE /*!< HSE used as system clock */
#if defined(RCC_PLL_SUPPORT)
#define LL_RCC_SYS_CLKSOURCE_STATUS_PLL RCC_CFGR_SWS_PLL /*!< PLL used as system clock */
#endif
/**
* @}
*/
/** @defgroup RCC_LL_EC_SYSCLK_DIV AHB prescaler
* @{
*/
#define LL_RCC_SYSCLK_DIV_1 0x00000000U /*!< SYSCLK not divided */
#define LL_RCC_SYSCLK_DIV_2 RCC_CFGR_HPRE_3 /*!< SYSCLK divided by 2 */
#define LL_RCC_SYSCLK_DIV_4 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 4 */
#define LL_RCC_SYSCLK_DIV_8 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 8 */
#define LL_RCC_SYSCLK_DIV_16 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 16 */
#define LL_RCC_SYSCLK_DIV_64 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2) /*!< SYSCLK divided by 64 */
#define LL_RCC_SYSCLK_DIV_128 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 128 */
#define LL_RCC_SYSCLK_DIV_256 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1) /*!< SYSCLK divided by 256 */
#define LL_RCC_SYSCLK_DIV_512 (RCC_CFGR_HPRE_3 | RCC_CFGR_HPRE_2 | RCC_CFGR_HPRE_1 | RCC_CFGR_HPRE_0) /*!< SYSCLK divided by 512 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB1_DIV APB1 low-speed prescaler (APB1)
* @{
*/
#define LL_RCC_APB1_DIV_1 0x00000000U /*!< HCLK not divided */
#define LL_RCC_APB1_DIV_2 RCC_CFGR_PPRE1_2 /*!< HCLK divided by 2 */
#define LL_RCC_APB1_DIV_4 (RCC_CFGR_PPRE1_2 | RCC_CFGR_PPRE1_0) /*!< HCLK divided by 4 */
#define LL_RCC_APB1_DIV_8 (RCC_CFGR_PPRE1_2 | RCC_CFGR_PPRE1_1) /*!< HCLK divided by 8 */
#define LL_RCC_APB1_DIV_16 (RCC_CFGR_PPRE1_2 | RCC_CFGR_PPRE1_1 | RCC_CFGR_PPRE1_0) /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_APB2_DIV APB2 low-speed prescaler (APB2)
* @{
*/
#define LL_RCC_APB2_DIV_1 0x00000000U /*!< HCLK not divided */
#define LL_RCC_APB2_DIV_2 RCC_CFGR_PPRE2_2 /*!< HCLK divided by 2 */
#define LL_RCC_APB2_DIV_4 (RCC_CFGR_PPRE2_2 | RCC_CFGR_PPRE2_0) /*!< HCLK divided by 4 */
#define LL_RCC_APB2_DIV_8 (RCC_CFGR_PPRE2_2 | RCC_CFGR_PPRE2_1) /*!< HCLK divided by 8 */
#define LL_RCC_APB2_DIV_16 (RCC_CFGR_PPRE2_2 | RCC_CFGR_PPRE2_1 | RCC_CFGR_PPRE2_0) /*!< HCLK divided by 16 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCOSOURCE MCO SOURCE selection
* @{
*/
#define LL_RCC_MCOSOURCE_NOCLOCK 0x00000000U /*!< MCO output disabled, no clock on MCO */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_MCOSOURCE_LSE RCC_CFGR_MCO_0 /*!< LSE selection as MCO source */
#endif /* RCC_LSE_SUPPORT */
#define LL_RCC_MCOSOURCE_LSI RCC_CFGR_MCO_1 /*!< LSI selection as MCO source */
#define LL_RCC_MCOSOURCE_HSI48M (RCC_CFGR_MCO_1 | RCC_CFGR_MCO_0) /*!< HSI48M selection as MCO source */
#define LL_RCC_MCOSOURCE_SYSCLK RCC_CFGR_MCO_2 /*!< SYSCLK selection as MCO source */
#define LL_RCC_MCOSOURCE_HSI (RCC_CFGR_MCO_2 | RCC_CFGR_MCO_0) /*!< HSI selection as MCO source */
#define LL_RCC_MCOSOURCE_HSE (RCC_CFGR_MCO_2 | RCC_CFGR_MCO_1) /*!< HSE selection as MCO source */
#if defined(RCC_PLL_SUPPORT)
#define LL_RCC_MCOSOURCE_PLL (RCC_CFGR_MCO_2 | RCC_CFGR_MCO_1 | RCC_CFGR_MCO_0) /*!< PLLCLK selection as MCO source */
#endif /* RCC_PLL_SUPPORT */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO Peripheral MCO get clock source
* @{
*/
#define LL_RCC_MCO_CLKSOURCE RCC_CFGR_MCO /*!< MCO Clock source selection */
/**
* @}
*/
/** @defgroup RCC_LL_EC_MCO_DIV MCO prescaler
* @{
*/
#define LL_RCC_MCO_DIV_1 0x00000000U /*!< MCO not divided */
#define LL_RCC_MCO_DIV_2 RCC_CFGR1_MCOPRE_0 /*!< MCO divided by 2 */
#define LL_RCC_MCO_DIV_4 RCC_CFGR1_MCOPRE_1 /*!< MCO divided by 4 */
#define LL_RCC_MCO_DIV_8 (RCC_CFGR1_MCOPRE_1 | RCC_CFGR1_MCOPRE_0) /*!< MCO divided by 8 */
#define LL_RCC_MCO_DIV_16 RCC_CFGR1_MCOPRE_2 /*!< MCO divided by 16 */
#define LL_RCC_MCO_DIV_32 (RCC_CFGR1_MCOPRE_2 | RCC_CFGR1_MCOPRE_0) /*!< MCO divided by 32 */
#define LL_RCC_MCO_DIV_64 (RCC_CFGR1_MCOPRE_2 | RCC_CFGR1_MCOPRE_1) /*!< MCO divided by 64 */
#define LL_RCC_MCO_DIV_128 (RCC_CFGR1_MCOPRE_2 | RCC_CFGR1_MCOPRE_1 | RCC_CFGR1_MCOPRE_0) /*!< MCO divided by 128 */
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EC_PERIPH_FREQUENCY Peripheral clock frequency
* @{
*/
#define LL_RCC_PERIPH_FREQUENCY_NO 0x00000000U /*!< No clock enabled for the peripheral */
#define LL_RCC_PERIPH_FREQUENCY_NA 0xFFFFFFFFU /*!< Frequency cannot be provided as external clock */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
#if defined(CANFD)
/** @defgroup RCC_LL_EC_CANFD_CLKSOURCE Peripheral CANFD clock source selection
* @{
*/
#define LL_RCC_CANFD_CLKSOURCE_PLL 0x00000000U /*!< PLL clock selected as CANFD clock */
#define LL_RCC_CANFD_CLKSOURCE_PLL_DIV2 RCC_CFGR2_CANCKSEL_0 /*!< PLL/2 clock selected as CANFD clock */
#define LL_RCC_CANFD_CLKSOURCE_PLL_DIV3 RCC_CFGR2_CANCKSEL_1 /*!< PLL/3 clock selected as CANFD clock */
#define LL_RCC_CANFD_CLKSOURCE_PLL_DIV4 (RCC_CFGR2_CANCKSEL_1 | RCC_CFGR2_CANCKSEL_0) /*!< PLL/4 clock selected as CANFD clock */
#define LL_RCC_CANFD_CLKSOURCE_PLL_DIV5 RCC_CFGR2_CANCKSEL_2 /*!< PLL/5 clock selected as CANFD clock */
#define LL_RCC_CANFD_CLKSOURCE_PLL_DIV6 (RCC_CFGR2_CANCKSEL_2 | RCC_CFGR2_CANCKSEL_0) /*!< PLL/6 clock selected as CANFD clock */
#define LL_RCC_CANFD_CLKSOURCE_PLL_DIV7 (RCC_CFGR2_CANCKSEL_2 | RCC_CFGR2_CANCKSEL_1) /*!< PLL/7 clock selected as CANFD clock */
#define LL_RCC_CANFD_CLKSOURCE_PLL_DIV8 (RCC_CFGR2_CANCKSEL_2 | RCC_CFGR2_CANCKSEL_1 | RCC_CFGR2_CANCKSEL_0) /*!< PLL/8 clock selected as CANFD clock */
#define LL_RCC_CANFD_CLKSOURCE_HSE RCC_CFGR2_CANCKSEL_3 /*!< HSE clock selected as CANFD clock */
/**
* @}
*/
#endif /* CANFD */
#if defined(RCC_BDCR_RTCSEL)
/** @defgroup RCC_LL_EC_RTC_CLKSOURCE RTC clock source selection
* @{
*/
#define LL_RCC_RTC_CLKSOURCE_NONE 0x00000000U /*!< No clock used as RTC clock */
#if defined(RCC_LSE_SUPPORT)
#define LL_RCC_RTC_CLKSOURCE_LSE RCC_BDCR_RTCSEL_0 /*!< LSE oscillator clock used as RTC clock */
#endif
#define LL_RCC_RTC_CLKSOURCE_LSI RCC_BDCR_RTCSEL_1 /*!< LSI oscillator clock used as RTC clock */
#define LL_RCC_RTC_CLKSOURCE_HSE_DIV128 RCC_BDCR_RTCSEL /*!< HSE oscillator clock divided by 128 used as RTC clock */
/**
* @}
*/
#endif
/** @defgroup RCC_LL_EC_USB_CLKSOURCE Peripheral USB clock source selection
* @{
*/
#define LL_RCC_USB_CLKSOURCE_PLL 0x00000000U /*!< PLL clock used as USB clock source */
#define LL_RCC_USB_CLKSOURCE_HSI48 RCC_CFGR1_USBSELHSI48 /*!< HSI48 clock used as USB clock source */
/**
* @}
*/
/** @defgroup RCC_LL_EC_USB_Prediv Peripheral USB clock prescaler
* @{
*/
#define LL_RCC_USB_DIV_1P5 0x00000000U /*!< USB divided by 1.5 */
#define LL_RCC_USB_DIV_1 RCC_CFGR_USBPRE_0 /*!< USB divided by 1 */
#define LL_RCC_USB_DIV_2P5 RCC_CFGR_USBPRE_1 /*!< USB divided by 2.5 */
#define LL_RCC_USB_DIV_2 (RCC_CFGR_USBPRE_1 | RCC_CFGR_USBPRE_0) /*!< USB divided by 2 */
#define LL_RCC_USB_DIV_3 RCC_CFGR_USBPRE_2 /*!< USB divided by 3 */
#define LL_RCC_USB_DIV_3P5 (RCC_CFGR_USBPRE_2 | RCC_CFGR_USBPRE_0) /*!< USB divided by 3.5 */
#define LL_RCC_USB_DIV_4 (RCC_CFGR_USBPRE_2 | RCC_CFGR_USBPRE_1) /*!< USB divided by 4 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_ADC_CLKSOURCE Peripheral ADC clock source selection
* @{
*/
#define LL_RCC_ADC_CLKSOURCE_PCLK2_DIV2 RCC_CFGR_ADCPRE_DIV2 /*!< PCLK/2 clock selected as ADC clock */
#define LL_RCC_ADC_CLKSOURCE_PCLK2_DIV4 RCC_CFGR_ADCPRE_DIV4 /*!< PCLK/4 clock selected as ADC clock */
#define LL_RCC_ADC_CLKSOURCE_PCLK2_DIV6 RCC_CFGR_ADCPRE_DIV6 /*!< PCLK/6 clock selected as ADC clock */
#define LL_RCC_ADC_CLKSOURCE_PCLK2_DIV8 RCC_CFGR_ADCPRE_DIV8 /*!< PCLK/8 clock selected as ADC clock */
#define LL_RCC_ADC_CLKSOURCE_PCLK2_DIV12 RCC_CFGR_ADCPRE_DIV12 /*!< PCLK/12 clock selected as ADC clock */
#define LL_RCC_ADC_CLKSOURCE_PCLK2_DIV16 RCC_CFGR_ADCPRE_DIV16 /*!< PCLK/16 clock selected as ADC clock */
/**
* @}
*/
#if defined(RCC_PLL_SUPPORT)
/** @defgroup RCC_LL_EC_PLLSOURCE PLL entry clock source
* @{
*/
#define LL_RCC_PLLSOURCE_HSI 0x00000000U /*!< HSI clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSI_DIV1 LL_RCC_PLLSOURCE_HSI /*!< HSI clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE RCC_CFGR_PLLSRC /*!< HSE clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV1 LL_RCC_PLLSOURCE_HSE /*!< HSE clock selected as PLL entry clock source */
#define LL_RCC_PLLSOURCE_HSE_DIV2 (RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE) /*!< HSE/2 clock selected as PLL entry clock source */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PLLMUL PLL Multiplication Factor
* @{
*/
#define LL_RCC_PLLMUL_2 RCC_CFGR_PLLMULL2 /* The PLL multiplication factor is 2 */
#define LL_RCC_PLLMUL_3 RCC_CFGR_PLLMULL3 /* The PLL multiplication factor is 3 */
#define LL_RCC_PLLMUL_4 RCC_CFGR_PLLMULL4 /* The PLL multiplication factor is 4 */
#define LL_RCC_PLLMUL_5 RCC_CFGR_PLLMULL5 /* The PLL multiplication factor is 5 */
#define LL_RCC_PLLMUL_6 RCC_CFGR_PLLMULL6 /* The PLL multiplication factor is 6 */
#define LL_RCC_PLLMUL_7 RCC_CFGR_PLLMULL7 /* The PLL multiplication factor is 7 */
#define LL_RCC_PLLMUL_8 RCC_CFGR_PLLMULL8 /* The PLL multiplication factor is 8 */
#define LL_RCC_PLLMUL_9 RCC_CFGR_PLLMULL9 /* The PLL multiplication factor is 9 */
#define LL_RCC_PLLMUL_10 RCC_CFGR_PLLMULL10 /* The PLL multiplication factor is 10 */
#define LL_RCC_PLLMUL_11 RCC_CFGR_PLLMULL11 /* The PLL multiplication factor is 11 */
#define LL_RCC_PLLMUL_12 RCC_CFGR_PLLMULL12 /* The PLL multiplication factor is 12 */
#define LL_RCC_PLLMUL_13 RCC_CFGR_PLLMULL13 /* The PLL multiplication factor is 13 */
#define LL_RCC_PLLMUL_14 RCC_CFGR_PLLMULL14 /* The PLL multiplication factor is 14 */
#define LL_RCC_PLLMUL_15 RCC_CFGR_PLLMULL15 /* The PLL multiplication factor is 15 */
#define LL_RCC_PLLMUL_16 RCC_CFGR_PLLMULL16 /* The PLL multiplication factor is 16 */
#define LL_RCC_PLLMUL_17 RCC_CFGR_PLLMULL17 /* The PLL multiplication factor is 17 */
#define LL_RCC_PLLMUL_18 RCC_CFGR_PLLMULL18 /* The PLL multiplication factor is 18 */
#define LL_RCC_PLLMUL_19 RCC_CFGR_PLLMULL19 /* The PLL multiplication factor is 19 */
#define LL_RCC_PLLMUL_20 RCC_CFGR_PLLMULL20 /* The PLL multiplication factor is 20 */
#define LL_RCC_PLLMUL_21 RCC_CFGR_PLLMULL21 /* The PLL multiplication factor is 21 */
/**
* @}
*/
/** @defgroup RCC_LL_EC_PREDIV_DIV PREDIV Division factor
* @{
*/
#define LL_RCC_PREDIV_DIV_1 0x00000000U /*!< HSE divider clock clock not divided */
#define LL_RCC_PREDIV_DIV_2 RCC_CFGR_PLLXTPRE /*!< HSE divider clock divided by 2 for PLL entry */
/**
* @}
*/
#endif
/** @defgroup RCC_HSE_EC_Freq HSE Config
* @{
*/
#define LL_RCC_HSE_4_6MHz 0x00000000U
#define LL_RCC_HSE_4_8MHz RCC_CFGR2_HSEDRV_0
#define LL_RCC_HSE_8_16MHz RCC_CFGR2_HSEDRV_1
#define LL_RCC_HSE_16_32MHz (RCC_CFGR2_HSEDRV_1 | RCC_CFGR2_HSEDRV_0)
/**
* @}
*/
/**
* @}
*/
/* Exported macro ------------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Macros RCC Exported Macros
* @{
*/
/** @defgroup RCC_LL_EM_WRITE_READ Common Write and read registers Macros
* @{
*/
/**
* @brief Write a value in RCC register
* @param __REG__ Register to be written
* @param __VALUE__ Value to be written in the register
* @retval None
*/
#define LL_RCC_WriteReg(__REG__, __VALUE__) WRITE_REG((RCC->__REG__), (__VALUE__))
/**
* @brief Read a value in RCC register
* @param __REG__ Register to be read
* @retval Register value
*/
#define LL_RCC_ReadReg(__REG__) READ_REG(RCC->__REG__)
/**
* @}
*/
/** @defgroup RCC_LL_EM_CALC_FREQ Calculate frequencies
* @{
*/
#if defined(RCC_PLL_SUPPORT)
/**
* @brief Helper macro to calculate the PLLCLK frequency on system domain
* @param __INPUTFREQ__ PLL Input frequency (based on HSE div Prediv1 or div 2 / HSI)
* @param __PLLMUL__: This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLMUL_2
* @arg @ref LL_RCC_PLLMUL_3
* @arg @ref LL_RCC_PLLMUL_4
* @arg @ref LL_RCC_PLLMUL_5
* @arg @ref LL_RCC_PLLMUL_6
* @arg @ref LL_RCC_PLLMUL_7
* @arg @ref LL_RCC_PLLMUL_8
* @arg @ref LL_RCC_PLLMUL_9
* @arg @ref LL_RCC_PLLMUL_10
* @arg @ref LL_RCC_PLLMUL_11
* @arg @ref LL_RCC_PLLMUL_12
* @arg @ref LL_RCC_PLLMUL_13
* @arg @ref LL_RCC_PLLMUL_14
* @arg @ref LL_RCC_PLLMUL_15
* @arg @ref LL_RCC_PLLMUL_16
* @arg @ref LL_RCC_PLLMUL_17
* @arg @ref LL_RCC_PLLMUL_18
* @arg @ref LL_RCC_PLLMUL_19
* @arg @ref LL_RCC_PLLMUL_20
* @arg @ref LL_RCC_PLLMUL_21
* @retval PLL clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PLLCLK_FREQ(__INPUTFREQ__, __PLLMUL__) \
((__INPUTFREQ__) * ((((((__PLLMUL__) & (RCC_CFGR_PLLMULL_5 | RCC_CFGR_PLLMULL_4)) >> 7U) | \
((__PLLMUL__) & (RCC_CFGR_PLLMULL_3 | RCC_CFGR_PLLMULL_2 | RCC_CFGR_PLLMULL_1 | RCC_CFGR_PLLMULL_0))) \
>> RCC_CFGR_PLLMULL_Pos) + 2U))
#endif
/**
* @brief Helper macro to calculate the HCLK frequency
* @param __SYSCLKFREQ__ SYSCLK frequency
* @param __AHBPRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval HCLK clock frequency (in Hz)
*/
#define __LL_RCC_CALC_HCLK_FREQ(__SYSCLKFREQ__,__AHBPRESCALER__) \
((__SYSCLKFREQ__) >> (AHBPrescTable[((__AHBPRESCALER__) & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos] & 0x1FU))
/**
* @brief Helper macro to calculate the PCLK1 frequency (APB1)
* @param __HCLKFREQ__ HCLK frequency
* @param __APB1PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval PCLK1 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK1_FREQ(__HCLKFREQ__, __APB1PRESCALER__) \
((__HCLKFREQ__) >> (APBPrescTable[(__APB1PRESCALER__) >> RCC_CFGR_PPRE1_Pos] & 0x1FU))
/**
* @brief Helper macro to calculate the PCLK2 frequency (APB2)
* @param __HCLKFREQ__ HCLK frequency
* @param __APB2PRESCALER__ This parameter can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
* @retval PCLK2 clock frequency (in Hz)
*/
#define __LL_RCC_CALC_PCLK2_FREQ(__HCLKFREQ__, __APB2PRESCALER__) \
((__HCLKFREQ__) >> (APBPrescTable[(__APB2PRESCALER__) >> RCC_CFGR_PPRE2_Pos] & 0x1FU))
/**
* @}
*/
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup RCC_LL_Exported_Functions RCC Exported Functions
* @{
*/
/** @defgroup RCC_LL_EF_HSE HSE
* @{
*/
/**
* @brief Enable the Clock Security System.
* @rmtoll CR CSSON LL_RCC_HSE_EnableCSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableCSS(void)
{
SET_BIT(RCC->CR, RCC_CR_CSSON);
}
/**
* @brief Enable HSE external oscillator (HSE Bypass)
* @rmtoll CR HSEBYP LL_RCC_HSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_EnableBypass(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEBYP);
}
/**
* @brief Disable HSE external oscillator (HSE Bypass)
* @rmtoll CR HSEBYP LL_RCC_HSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_DisableBypass(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEBYP);
}
/**
* @brief Enable HSE crystal oscillator (HSE ON)
* @rmtoll CR HSEON LL_RCC_HSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSEON);
}
/**
* @brief Disable HSE crystal oscillator (HSE ON)
* @rmtoll CR HSEON LL_RCC_HSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSEON);
}
/**
* @brief Check if HSE oscillator Ready
* @rmtoll CR HSERDY LL_RCC_HSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSE_IsReady(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSERDY) == (RCC_CR_HSERDY)) ? 1UL : 0UL);
}
/**
* @brief Set HSE Crystal working frequency
* @param HSEFreq This parameter can be one of the following values:
* @arg @ref LL_RCC_HSE_4_6MHz
* @arg @ref LL_RCC_HSE_4_8MHz
* @arg @ref LL_RCC_HSE_8_16MHz
* @arg @ref LL_RCC_HSE_16_32MHz
* @note The maximum working frequency varies depending on the devices.
* Refer to the devices data sheet for the maximum working frequency.
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSE_SetFreqRegion(uint32_t HSEFreq)
{
MODIFY_REG(RCC->CFGR2, RCC_CFGR2_HSEDRV, HSEFreq);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_HSI HSI
* @{
*/
/**
* @brief Enable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Disable HSI oscillator
* @rmtoll CR HSION LL_RCC_HSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_HSION);
}
/**
* @brief Check if HSI clock is ready
* @rmtoll CR HSIRDY LL_RCC_HSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_IsReady(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_HSIRDY) == (RCC_CR_HSIRDY)) ? 1UL : 0UL);
}
/**
* @brief Get HSI Calibration value
* @note When HSITRIM is written, HSICAL is updated with the sum of
* HSITRIM and the factory trim value
* @rmtoll CR HSICAL LL_RCC_HSI_GetCalibration
* @retval Between Min_Data = 0x000 and Max_Data = 0x7FF
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibration(void)
{
uint32_t calibration_low = 0, calibration_high = 0;
calibration_low = (READ_BIT(RCC->CR, RCC_CR_HSICAL) >> RCC_CR_HSICAL_Pos) & 0x00FF;
calibration_high = (READ_BIT(RCC->CR, RCC_CR_HSICAL) >> RCC_CR_HSICAL_Pos) & 0xE000;
return (calibration_high >> 5U | calibration_low);
}
/**
* @brief Set HSI Calibration trimming
* @param Value Between Min_Data = 0 and Max_Data = 31
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->CR, RCC_CR_HSITRIM, Value << RCC_CR_HSITRIM_Pos);
}
/**
* @brief Get HSI Calibration trimming
* @rmtoll CR HSITRIM LL_RCC_HSI_GetCalibTrimming
* @retval Between Min_Data = 0 and Max_Data = 31
*/
__STATIC_INLINE uint32_t LL_RCC_HSI_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->CR, RCC_CR_HSITRIM) >> RCC_CR_HSITRIM_Pos);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_HSI48 HSI48
* @{
*/
/**
* @brief Enable HSI48
* @rmtoll CFGR1 HSI48ON LL_RCC_HSI48_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI48_Enable(void)
{
SET_BIT(RCC->CFGR1, RCC_CFGR1_HSI48ON);
}
/**
* @brief Disable HSI48
* @rmtoll CFGR1 HSI48ON LL_RCC_HSI48_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI48_Disable(void)
{
CLEAR_BIT(RCC->CFGR1, RCC_CFGR1_HSI48ON);
}
/**
* @brief Check if HSI48 oscillator Ready
* @rmtoll CFGR1 HSI48RDY LL_RCC_HSI48_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_HSI48_IsReady(void)
{
return ((READ_BIT(RCC->CFGR1, RCC_CFGR1_HSI48RDY) == (RCC_CFGR1_HSI48RDY)) ? 1UL : 0UL);
}
/**
* @brief Get HSI48 Calibration value
* @rmtoll CFGR1 HSI48CAL LL_RCC_HSI48_GetCalibration
* @retval Between Min_Data = 0x00 and Max_Data = 0x1FFF
*/
__STATIC_INLINE uint32_t LL_RCC_HSI48_GetCalibration(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR1, RCC_CFGR1_HSI48CAL) >> RCC_CFGR1_HSI48CAL_Pos);
}
/**
* @brief Set HSI48 Calibration trimming
* @param Value Between Min_Data = 0 and Max_Data = 127
* @retval None
*/
__STATIC_INLINE void LL_RCC_HSI48_SetCalibTrimming(uint32_t Value)
{
MODIFY_REG(RCC->CFGR1, RCC_CFGR1_HSI48TRIM, Value << RCC_CFGR1_HSI48TRIM_Pos);
}
/**
* @brief Get HSI48 Calibration trimming
* @rmtoll CFGR1 HSI48TRIM LL_RCC_HSI48_GetCalibTrimming
* @retval Between Min_Data = 0 and Max_Data = 127
*/
__STATIC_INLINE uint32_t LL_RCC_HSI48_GetCalibTrimming(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR1, RCC_CFGR1_HSI48TRIM) >> RCC_CFGR1_HSI48TRIM_Pos);
}
/**
* @}
*/
#if defined(RCC_LSE_SUPPORT)
/** @defgroup RCC_LL_EF_LSE LSE
* @{
*/
/**
* @brief Enable Low Speed External (LSE) crystal.
* @rmtoll BDCR LSEON LL_RCC_LSE_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Enable(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEON);
}
/**
* @brief Disable Low Speed External (LSE) crystal.
* @rmtoll BDCR LSEON LL_RCC_LSE_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_Disable(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEON);
}
/**
* @brief Enable external clock source (LSE bypass).
* @rmtoll BDCR LSEBYP LL_RCC_LSE_EnableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_EnableBypass(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
}
/**
* @brief Disable external clock source (LSE bypass).
* @rmtoll BDCR LSEBYP LL_RCC_LSE_DisableBypass
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_DisableBypass(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_LSEBYP);
}
/**
* @brief Set LSE oscillator drive capability
* @note The oscillator is in Xtal mode when it is not in bypass mode.
* @param LSEDrive This parameter can be one of the following values:
* @arg @ref LL_RCC_LSEDRIVE_LOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUM
* @arg @ref LL_RCC_LSEDRIVE_HIGH
* @arg @ref LL_RCC_LSEDRIVE_VERY_HIGH
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSE_SetDriveCapability(uint32_t LSEDrive)
{
MODIFY_REG(RCC->BDCR, RCC_BDCR_LSEDRV, LSEDrive);
}
/**
* @brief Get LSE oscillator drive capability
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_LSEDRIVE_LOW
* @arg @ref LL_RCC_LSEDRIVE_MEDIUM
* @arg @ref LL_RCC_LSEDRIVE_HIGH
* @arg @ref LL_RCC_LSEDRIVE_VERY_HIGH
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_GetDriveCapability(void)
{
return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_LSEDRV));
}
/**
* @brief Check if LSE oscillator Ready
* @rmtoll BDCR LSERDY LL_RCC_LSE_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSE_IsReady(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_LSERDY) == (RCC_BDCR_LSERDY)) ? 1UL : 0UL);
}
/**
* @}
*/
#endif
/** @defgroup RCC_LL_EF_RSTOUT RSTOUT
* @{
*/
/**
* @brief Enable Reset Output
* @rmtoll BDCR RCC_BDCR_RSTOUT_DIS LL_RCC_RSTOUT_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_RSTOUT_Enable(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_RSTOUT_DIS);
}
/**
* @brief Disable Reset Output
* @rmtoll BDCR RCC_BDCR_RSTOUT_DIS LL_RCC_RSTOUT_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_RSTOUT_Disable(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_RSTOUT_DIS);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_LSI LSI
* @{
*/
/**
* @brief Enable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Enable(void)
{
SET_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Disable LSI Oscillator
* @rmtoll CSR LSION LL_RCC_LSI_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_LSI_Disable(void)
{
CLEAR_BIT(RCC->CSR, RCC_CSR_LSION);
}
/**
* @brief Check if LSI is Ready
* @rmtoll CSR LSIRDY LL_RCC_LSI_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_LSI_IsReady(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_LSIRDY) == (RCC_CSR_LSIRDY)) ? 1UL : 0UL);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_System System
* @{
*/
/**
* @brief Configure the system clock source
* @rmtoll CFGR SW LL_RCC_SetSysClkSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_PLL
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetSysClkSource(uint32_t Source)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_SW, Source);
}
/**
* @brief Get the system clock source
* @rmtoll CFGR SWS LL_RCC_GetSysClkSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSI
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_HSE
* @arg @ref LL_RCC_SYS_CLKSOURCE_STATUS_PLL
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
*/
__STATIC_INLINE uint32_t LL_RCC_GetSysClkSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_SWS));
}
/**
* @brief Set AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_SetAHBPrescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAHBPrescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_HPRE, Prescaler);
}
/**
* @brief Set APB1 prescaler
* @rmtoll CFGR PPRE1 LL_RCC_SetAPB1Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB1Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE1, Prescaler);
}
/**
* @brief Set APB2 prescaler
* @rmtoll CFGR PPRE2 LL_RCC_SetAPB2Prescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetAPB2Prescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PPRE2, Prescaler);
}
/**
* @brief Get AHB prescaler
* @rmtoll CFGR HPRE LL_RCC_GetAHBPrescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_SYSCLK_DIV_1
* @arg @ref LL_RCC_SYSCLK_DIV_2
* @arg @ref LL_RCC_SYSCLK_DIV_4
* @arg @ref LL_RCC_SYSCLK_DIV_8
* @arg @ref LL_RCC_SYSCLK_DIV_16
* @arg @ref LL_RCC_SYSCLK_DIV_64
* @arg @ref LL_RCC_SYSCLK_DIV_128
* @arg @ref LL_RCC_SYSCLK_DIV_256
* @arg @ref LL_RCC_SYSCLK_DIV_512
*/
__STATIC_INLINE uint32_t LL_RCC_GetAHBPrescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_HPRE));
}
/**
* @brief Get APB1 prescaler
* @rmtoll CFGR PPRE1 LL_RCC_GetAPB1Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB1_DIV_1
* @arg @ref LL_RCC_APB1_DIV_2
* @arg @ref LL_RCC_APB1_DIV_4
* @arg @ref LL_RCC_APB1_DIV_8
* @arg @ref LL_RCC_APB1_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB1Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE1));
}
/**
* @brief Get APB2 prescaler
* @rmtoll CFGR PPRE2 LL_RCC_GetAPB2Prescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_APB2_DIV_1
* @arg @ref LL_RCC_APB2_DIV_2
* @arg @ref LL_RCC_APB2_DIV_4
* @arg @ref LL_RCC_APB2_DIV_8
* @arg @ref LL_RCC_APB2_DIV_16
*/
__STATIC_INLINE uint32_t LL_RCC_GetAPB2Prescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PPRE2));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_MCO MCO
* @{
*/
/**
* @brief Configure MCOx
* @rmtoll CFGR MCOSEL LL_RCC_ConfigMCO\n
* CFGR1 MCOPRE LL_RCC_ConfigMCO
* @param MCOxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_MCOSOURCE_NOCLOCK
* @arg @ref LL_RCC_MCOSOURCE_LSE
* @arg @ref LL_RCC_MCOSOURCE_LSI
* @arg @ref LL_RCC_MCOSOURCE_HSI48M
* @arg @ref LL_RCC_MCOSOURCE_SYSCLK
* @arg @ref LL_RCC_MCOSOURCE_HSI
* @arg @ref LL_RCC_MCOSOURCE_HSE
* @arg @ref LL_RCC_MCOSOURCE_PLL
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
* @param MCOxPrescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO_DIV_1
* @arg @ref LL_RCC_MCO_DIV_2
* @arg @ref LL_RCC_MCO_DIV_4
* @arg @ref LL_RCC_MCO_DIV_8
* @arg @ref LL_RCC_MCO_DIV_16
* @arg @ref LL_RCC_MCO_DIV_32
* @arg @ref LL_RCC_MCO_DIV_64
* @arg @ref LL_RCC_MCO_DIV_128
* @retval None
*/
__STATIC_INLINE void LL_RCC_ConfigMCO(uint32_t MCOxSource, uint32_t MCOxPrescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_MCO, MCOxSource);
MODIFY_REG(RCC->CFGR1, RCC_CFGR1_MCOPRE, MCOxPrescaler);
}
/**
* @brief Get MCO clock source
* @rmtoll CFGR MCOSEL LL_RCC_GetMCOClockSource
* @param MCOx This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_MCOSOURCE_NOCLOCK
* @arg @ref LL_RCC_MCOSOURCE_LSE
* @arg @ref LL_RCC_MCOSOURCE_LSI
* @arg @ref LL_RCC_MCOSOURCE_HSI48M
* @arg @ref LL_RCC_MCOSOURCE_SYSCLK
* @arg @ref LL_RCC_MCOSOURCE_HSI
* @arg @ref LL_RCC_MCOSOURCE_HSE
* @arg @ref LL_RCC_MCOSOURCE_PLL
* @note Depending on devices and packages, some clocks may not be available.
* Refer to device datasheet for clocks availability.
*/
__STATIC_INLINE uint32_t LL_RCC_GetMCOClockSource(uint32_t MCOx)
{
return (uint32_t)(READ_BIT(RCC->CFGR, MCOx));
}
/**
* @brief Get MCO division factor
* @rmtoll CFGR MCOPRE LL_RCC_GetMCODiv
* @param MCOx This parameter can be one of the following values:
* @arg @ref LL_RCC_MCO_CLKSOURCE
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_MCO_DIV_1
* @arg @ref LL_RCC_MCO_DIV_2
* @arg @ref LL_RCC_MCO_DIV_4
* @arg @ref LL_RCC_MCO_DIV_8
* @arg @ref LL_RCC_MCO_DIV_16
* @arg @ref LL_RCC_MCO_DIV_32
* @arg @ref LL_RCC_MCO_DIV_64
* @arg @ref LL_RCC_MCO_DIV_128
*/
__STATIC_INLINE uint32_t LL_RCC_GetMCODiv(uint32_t MCOx)
{
return (uint32_t)(READ_BIT(RCC->CFGR1, RCC_CFGR1_MCOPRE));
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_Peripheral_Clock_Source Peripheral Clock Source
* @{
*/
#if defined(CANFD)
/**
* @brief Configure CANFD clock source
* @param CANFDSource This parameter can be one of the following values:
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV2
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV3
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV4
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV5
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV6
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV7
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV8
* @arg @ref LL_RCC_CANFD_CLKSOURCE_HSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetCANFDClockSource(uint32_t CANFDSource)
{
MODIFY_REG(RCC->CFGR2, RCC_CFGR2_CANCKSEL, CANFDSource);
}
/**
* @brief Get CANFD clock source
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV2
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV3
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV4
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV5
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV6
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV7
* @arg @ref LL_RCC_CANFD_CLKSOURCE_PLL_DIV8
* @arg @ref LL_RCC_CANFD_CLKSOURCE_HSE
*/
__STATIC_INLINE uint32_t LL_RCC_GetCANFDClockSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR2, RCC_CFGR2_CANCKSEL));
}
#endif /* CANFD */
/**
* @brief Set ADC Clock Source
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV2
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV4
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV6
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV8
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV12
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV16
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetADCClockSource(uint32_t Source)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_ADCPRE, Source);
}
/**
* @brief Get ADC Clock Source
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV2
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV4
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV6
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV8
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV12
* @arg @ref LL_RCC_ADC_CLKSOURCE_PCLK2_DIV16
*/
__STATIC_INLINE uint32_t LL_RCC_GetADCClockSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_ADCPRE));
}
/**
* @brief Configure USB clock source
* @rmtoll CFGR1 USBSELHSI48 LL_RCC_SetUSBClockSource
* @param USBxSource This parameter can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE_HSI48
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL
*
* (*) value not defined in all devices.
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetUSBClockSource(uint32_t USBxSource)
{
MODIFY_REG(RCC->CFGR1, RCC_CFGR1_USBSELHSI48, USBxSource);
}
/**
* @brief Get USBx clock source
* @rmtoll CFGR1 USBSELHSI48 LL_RCC_GetUSBClockSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_USB_CLKSOURCE_HSI48
* @arg @ref LL_RCC_USB_CLKSOURCE_PLL
*/
__STATIC_INLINE uint32_t LL_RCC_GetUSBClockSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR1, RCC_CFGR1_USBSELHSI48));
}
/**
* @brief Configure USB clock source
* @rmtoll CFGR1 USBPRE LL_RCC_SetUSBPrescaler
* @param Prescaler This parameter can be one of the following values:
* @arg @ref LL_RCC_USB_DIV_1P5
* @arg @ref LL_RCC_USB_DIV_1
* @arg @ref LL_RCC_USB_DIV_2P5
* @arg @ref LL_RCC_USB_DIV_2
* @arg @ref LL_RCC_USB_DIV_3
* @arg @ref LL_RCC_USB_DIV_3P5
* @arg @ref LL_RCC_USB_DIV_4
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetUSBPrescaler(uint32_t Prescaler)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_USBPRE, Prescaler);
}
/**
* @brief Configure USB clock source
* @rmtoll CFGR1 USBPRE LL_RCC_SetUSBPrescaler
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_USB_DIV_1P5
* @arg @ref LL_RCC_USB_DIV_1
* @arg @ref LL_RCC_USB_DIV_2P5
* @arg @ref LL_RCC_USB_DIV_2
* @arg @ref LL_RCC_USB_DIV_3
* @arg @ref LL_RCC_USB_DIV_3P5
* @arg @ref LL_RCC_USB_DIV_4
* @retval None
*/
__STATIC_INLINE uint32_t LL_RCC_GetUSBPrescaler(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_USBPRE));
}
/**
* @}
*/
#if defined(RTC)
#if defined(RCC_BDCR_RTCSEL)
/** @defgroup RCC_LL_EF_RTC RTC
* @{
*/
/**
* @brief Set RTC Clock Source
* @note Once the RTC clock source has been selected, it cannot be changed anymore unless
* the Backup domain is reset, or unless a failure is detected on LSE (LSECSSD is
* set). The BDRST bit can be used to reset them.
* @rmtoll BDCR RTCSEL LL_RCC_SetRTCClockSource
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_RTC_CLKSOURCE_NONE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSI
* @arg @ref LL_RCC_RTC_CLKSOURCE_HSE_DIV128
* @retval None
*/
__STATIC_INLINE void LL_RCC_SetRTCClockSource(uint32_t Source)
{
MODIFY_REG(RCC->BDCR, RCC_BDCR_RTCSEL, Source);
}
/**
* @brief Get RTC Clock Source
* @rmtoll BDCR RTCSEL LL_RCC_GetRTCClockSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_RTC_CLKSOURCE_NONE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSE
* @arg @ref LL_RCC_RTC_CLKSOURCE_LSI
* @arg @ref LL_RCC_RTC_CLKSOURCE_HSE_DIV128
*/
__STATIC_INLINE uint32_t LL_RCC_GetRTCClockSource(void)
{
return (uint32_t)(READ_BIT(RCC->BDCR, RCC_BDCR_RTCSEL));
}
#endif
/**
* @brief Enable RTC
* @rmtoll BDCR RTCEN LL_RCC_EnableRTC
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableRTC(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_RTCEN);
}
/**
* @brief Disable RTC
* @rmtoll BDCR RTCEN LL_RCC_DisableRTC
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableRTC(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_RTCEN);
}
/**
* @brief Check if RTC has been enabled or not
* @rmtoll BDCR RTCEN LL_RCC_IsEnabledRTC
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledRTC(void)
{
return ((READ_BIT(RCC->BDCR, RCC_BDCR_RTCEN) == (RCC_BDCR_RTCEN)) ? 1UL : 0UL);
}
/**
* @brief Force the Backup domain reset
* @rmtoll BDCR BDRST LL_RCC_ForceBackupDomainReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_ForceBackupDomainReset(void)
{
SET_BIT(RCC->BDCR, RCC_BDCR_BDRST);
}
/**
* @brief Release the Backup domain reset
* @rmtoll BDCR BDRST LL_RCC_ReleaseBackupDomainReset
* @retval None
*/
__STATIC_INLINE void LL_RCC_ReleaseBackupDomainReset(void)
{
CLEAR_BIT(RCC->BDCR, RCC_BDCR_BDRST);
}
/**
* @}
*/
#endif
#if defined(RCC_PLL_SUPPORT)
/** @defgroup RCC_LL_EF_PLL PLL
* @{
*/
/**
* @brief Enable PLL
* @rmtoll CR PLLON LL_RCC_PLL_Enable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_Enable(void)
{
SET_BIT(RCC->CR, RCC_CR_PLLON);
}
/**
* @brief Disable PLL
* @note Cannot be disabled if the PLL clock is used as the system clock
* @rmtoll CR PLLON LL_RCC_PLL_Disable
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_Disable(void)
{
CLEAR_BIT(RCC->CR, RCC_CR_PLLON);
}
/**
* @brief Check if PLL Ready
* @rmtoll CR PLLRDY LL_RCC_PLL_IsReady
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_IsReady(void)
{
return ((READ_BIT(RCC->CR, RCC_CR_PLLRDY) == (RCC_CR_PLLRDY)) ? 1UL : 0UL);
}
/**
* @brief Configure PLL used for SYSCLK Domain
* @rmtoll CFGR PLLSRC LL_RCC_PLL_ConfigDomain_SYS\n
* CFGR PLLXTPRE LL_RCC_PLL_ConfigDomain_SYS\n
* CFGR PLLMULL LL_RCC_PLL_ConfigDomain_SYS\n
* @param Source This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_HSI_DIV1
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV1
* @arg @ref LL_RCC_PLLSOURCE_HSE_DIV2
* @param PLLMul This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLMUL_2
* @arg @ref LL_RCC_PLLMUL_3
* @arg @ref LL_RCC_PLLMUL_4
* @arg @ref LL_RCC_PLLMUL_5
* @arg @ref LL_RCC_PLLMUL_6
* @arg @ref LL_RCC_PLLMUL_7
* @arg @ref LL_RCC_PLLMUL_8
* @arg @ref LL_RCC_PLLMUL_9
* @arg @ref LL_RCC_PLLMUL_10
* @arg @ref LL_RCC_PLLMUL_11
* @arg @ref LL_RCC_PLLMUL_12
* @arg @ref LL_RCC_PLLMUL_13
* @arg @ref LL_RCC_PLLMUL_14
* @arg @ref LL_RCC_PLLMUL_15
* @arg @ref LL_RCC_PLLMUL_16
* @arg @ref LL_RCC_PLLMUL_17
* @arg @ref LL_RCC_PLLMUL_18
* @arg @ref LL_RCC_PLLMUL_19
* @arg @ref LL_RCC_PLLMUL_20
* @arg @ref LL_RCC_PLLMUL_21
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_ConfigDomain_SYS(uint32_t Source, uint32_t PLLMul)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLSRC | RCC_CFGR_PLLXTPRE | RCC_CFGR_PLLMULL, Source | PLLMul);
}
/**
* @brief Configure PLL clock source
* @rmtoll CFGR PLLSRC LL_RCC_PLL_SetMainSource
* @param PLLSource This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_SetMainSource(uint32_t PLLSource)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLSRC, PLLSource);
}
/**
* @brief Get the oscillator used as PLL clock source.
* @rmtoll CFGR PLLSRC LL_RCC_PLL_GetMainSource
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLSOURCE_HSI
* @arg @ref LL_RCC_PLLSOURCE_HSE
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetMainSource(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLSRC));
}
/**
* @brief Configure PLL Multiplication Factor.
* @param PLLMul This parameter can be one of the following values:
* @arg @ref LL_RCC_PLLMUL_2
* @arg @ref LL_RCC_PLLMUL_3
* @arg @ref LL_RCC_PLLMUL_4
* @arg @ref LL_RCC_PLLMUL_5
* @arg @ref LL_RCC_PLLMUL_6
* @arg @ref LL_RCC_PLLMUL_7
* @arg @ref LL_RCC_PLLMUL_8
* @arg @ref LL_RCC_PLLMUL_9
* @arg @ref LL_RCC_PLLMUL_10
* @arg @ref LL_RCC_PLLMUL_11
* @arg @ref LL_RCC_PLLMUL_12
* @arg @ref LL_RCC_PLLMUL_13
* @arg @ref LL_RCC_PLLMUL_14
* @arg @ref LL_RCC_PLLMUL_15
* @arg @ref LL_RCC_PLLMUL_16
* @arg @ref LL_RCC_PLLMUL_17
* @arg @ref LL_RCC_PLLMUL_18
* @arg @ref LL_RCC_PLLMUL_19
* @arg @ref LL_RCC_PLLMUL_20
* @arg @ref LL_RCC_PLLMUL_21
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_SetMulFactor(uint32_t PLLMul)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLMULL, PLLMul);
}
/**
* @brief Get the PLL Multiplication Factor.
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PLLMUL_2
* @arg @ref LL_RCC_PLLMUL_3
* @arg @ref LL_RCC_PLLMUL_4
* @arg @ref LL_RCC_PLLMUL_5
* @arg @ref LL_RCC_PLLMUL_6
* @arg @ref LL_RCC_PLLMUL_7
* @arg @ref LL_RCC_PLLMUL_8
* @arg @ref LL_RCC_PLLMUL_9
* @arg @ref LL_RCC_PLLMUL_10
* @arg @ref LL_RCC_PLLMUL_11
* @arg @ref LL_RCC_PLLMUL_12
* @arg @ref LL_RCC_PLLMUL_13
* @arg @ref LL_RCC_PLLMUL_14
* @arg @ref LL_RCC_PLLMUL_15
* @arg @ref LL_RCC_PLLMUL_16
* @arg @ref LL_RCC_PLLMUL_17
* @arg @ref LL_RCC_PLLMUL_18
* @arg @ref LL_RCC_PLLMUL_19
* @arg @ref LL_RCC_PLLMUL_20
* @arg @ref LL_RCC_PLLMUL_21
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetMulFactor(void)
{
return (uint32_t)(READ_BIT(RCC->CFGR, RCC_CFGR_PLLMULL));
}
/**
* @brief Set HSE PREDIV division factor for the main PLL
* @note They can be written only when the PLL is disabled
* @rmtoll CFGR PLLXTPRE LL_RCC_PLL_SetPrediv
* @param Prediv This parameter can be one of the following values:
* @arg @ref LL_RCC_PREDIV_DIV_1
* @arg @ref LL_RCC_PREDIV_DIV_2
* @retval None
*/
__STATIC_INLINE void LL_RCC_PLL_SetPrediv(uint32_t Prediv)
{
MODIFY_REG(RCC->CFGR, RCC_CFGR_PLLXTPRE, Prediv);
}
/**
* @brief Get HSE PREDIV division factor for the main PLL
* @note They can be written only when the PLL is disabled
* @rmtoll CFGR PLLXTPRE LL_RCC_PLL_GetPrediv
* @retval Returned value can be one of the following values:
* @arg @ref LL_RCC_PREDIV_DIV_1
* @arg @ref LL_RCC_PREDIV_DIV_2
*/
__STATIC_INLINE uint32_t LL_RCC_PLL_GetPrediv(void)
{
return (uint32_t)READ_BIT(RCC->CFGR, RCC_CFGR_PLLXTPRE);
}
/**
* @}
*/
#endif
/** @defgroup RCC_LL_EF_FLAG_Management FLAG Management
* @{
*/
/**
* @brief Clear LSI ready interrupt flag
* @rmtoll CIR LSIRDYC LL_RCC_ClearFlag_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSIRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_LSIRDYC);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Clear LSE ready interrupt flag
* @rmtoll CIR LSERDYC LL_RCC_ClearFlag_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_LSERDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_LSERDYC);
}
#endif
/**
* @brief Clear HSI ready interrupt flag
* @rmtoll CIR HSIRDYC LL_RCC_ClearFlag_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSIRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSIRDYC);
}
/**
* @brief Clear HSE ready interrupt flag
* @rmtoll CIR HSERDYC LL_RCC_ClearFlag_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSERDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSERDYC);
}
#if defined(RCC_PLL_SUPPORT)
/**
* @brief Clear PLL ready interrupt flag
* @rmtoll CIR PLLRDYC LL_RCC_ClearFlag_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_PLLRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_PLLRDYC);
}
#endif
/**
* @brief Clear PLL ready interrupt flag
* @rmtoll CIR HSI48RDYC LL_RCC_ClearFlag_HSI48RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSI48RDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSI48RDYC);
}
/**
* @brief Clear Clock security system interrupt flag
* @rmtoll CIR CSSC LL_RCC_ClearFlag_HSECSS
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearFlag_HSECSS(void)
{
SET_BIT(RCC->CIR, RCC_CIR_CSSC);
}
/**
* @brief Check if LSI ready interrupt occurred or not
* @rmtoll CIR LSIRDYF LL_RCC_IsActiveFlag_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSIRDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_LSIRDYF) == (RCC_CIR_LSIRDYF)) ? 1UL : 0UL);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Check if LSE ready interrupt occurred or not
* @rmtoll CIR LSERDYF LL_RCC_IsActiveFlag_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_LSERDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_LSERDYF) == (RCC_CIR_LSERDYF)) ? 1UL : 0UL);
}
#endif
/**
* @brief Check if HSI ready interrupt occurred or not
* @rmtoll CIR HSIRDYF LL_RCC_IsActiveFlag_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSIRDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_HSIRDYF) == (RCC_CIR_HSIRDYF)) ? 1UL : 0UL);
}
/**
* @brief Check if HSE ready interrupt occurred or not
* @rmtoll CIR HSERDYF LL_RCC_IsActiveFlag_HSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSERDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_HSERDYF) == (RCC_CIR_HSERDYF)) ? 1UL : 0UL);
}
#if defined(RCC_PLL_SUPPORT)
/**
* @brief Check if PLL ready interrupt occurred or not
* @rmtoll CIR PLLRDYF LL_RCC_IsActiveFlag_PLLRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PLLRDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_PLLRDYF) == (RCC_CIR_PLLRDYF)) ? 1UL : 0UL);
}
#endif
/**
* @brief Check if Clock security system interrupt occurred or not
* @rmtoll CIR CSSF LL_RCC_IsActiveFlag_HSECSS
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_HSECSS(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_CSSF) == (RCC_CIR_CSSF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Independent Watchdog reset is set or not.
* @rmtoll CSR IWDGRSTF LL_RCC_IsActiveFlag_IWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_IWDGRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_IWDGRSTF) == (RCC_CSR_IWDGRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Option byte reset is set or not.
* @rmtoll CSR OBLRSTF LL_RCC_IsActiveFlag_OBLRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_OBLRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_OBLRSTF) == (RCC_CSR_OBLRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Pin reset is set or not.
* @rmtoll CSR PINRSTF LL_RCC_IsActiveFlag_PINRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PINRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_PINRSTF) == (RCC_CSR_PINRSTF)) ? 1UL : 0UL);
}
/**
* @brief Check if RCC flag Software reset is set or not.
* @rmtoll CSR SFTRSTF LL_RCC_IsActiveFlag_SFTRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_SFTRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_SFTRSTF) == (RCC_CSR_SFTRSTF)) ? 1UL : 0UL);
}
#if defined(WWDG)
/**
* @brief Check if RCC flag Window Watchdog reset is set or not.
* @rmtoll CSR WWDGRSTF LL_RCC_IsActiveFlag_WWDGRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_WWDGRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_WWDGRSTF) == (RCC_CSR_WWDGRSTF)) ? 1UL : 0UL);
}
#endif
/**
* @brief Check if RCC flag BOR or POR/PDR reset is set or not.
* @rmtoll CSR PWRRSTF LL_RCC_IsActiveFlag_PWRRST
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsActiveFlag_PWRRST(void)
{
return ((READ_BIT(RCC->CSR, RCC_CSR_PWRRSTF) == (RCC_CSR_PWRRSTF)) ? 1UL : 0UL);
}
/**
* @brief Set RMVF bit to clear the reset flags.
* @rmtoll CSR RMVF LL_RCC_ClearResetFlags
* @retval None
*/
__STATIC_INLINE void LL_RCC_ClearResetFlags(void)
{
SET_BIT(RCC->CSR, RCC_CSR_RMVF);
}
/**
* @}
*/
/** @defgroup RCC_LL_EF_IT_Management IT Management
* @{
*/
/**
* @brief Enable LSI ready interrupt
* @rmtoll CIR LSIRDYIE LL_RCC_EnableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSIRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_LSIRDYIE);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Enable LSE ready interrupt
* @rmtoll CIR LSERDYIE LL_RCC_EnableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_LSERDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_LSERDYIE);
}
#endif
/**
* @brief Enable HSI ready interrupt
* @rmtoll CIR HSIRDYIE LL_RCC_EnableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSIRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSIRDYIE);
}
/**
* @brief Enable HSE ready interrupt
* @rmtoll CIR HSERDYIE LL_RCC_EnableIT_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSERDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSERDYIE);
}
#if defined(RCC_PLL_SUPPORT)
/**
* @brief Enable PLL ready interrupt
* @rmtoll CIR PLLRDYIE LL_RCC_EnableIT_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_PLLRDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_PLLRDYIE);
}
#endif
/**
* @brief Enable HSI48 ready interrupt
* @rmtoll CIER HSI48RDYIE LL_RCC_EnableIT_HSI48RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_EnableIT_HSI48RDY(void)
{
SET_BIT(RCC->CIR, RCC_CIR_HSI48RDYIE);
}
/**
* @brief Disable LSI ready interrupt
* @rmtoll CIR LSIRDYIE LL_RCC_DisableIT_LSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSIRDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_LSIRDYIE);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Disable LSE ready interrupt
* @rmtoll CIR LSERDYIE LL_RCC_DisableIT_LSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_LSERDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_LSERDYIE);
}
#endif
/**
* @brief Disable HSI ready interrupt
* @rmtoll CIR HSIRDYIE LL_RCC_DisableIT_HSIRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSIRDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_HSIRDYIE);
}
/**
* @brief Disable HSE ready interrupt
* @rmtoll CIR HSERDYIE LL_RCC_DisableIT_HSERDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSERDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_HSERDYIE);
}
#if defined(RCC_PLL_SUPPORT)
/**
* @brief Disable PLL ready interrupt
* @rmtoll CIR PLLRDYIE LL_RCC_DisableIT_PLLRDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_PLLRDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_PLLRDYIE);
}
#endif
/**
* @brief Disable HSI48 ready interrupt
* @rmtoll CIR HSI48RDYIE LL_RCC_DisableIT_HSI48RDY
* @retval None
*/
__STATIC_INLINE void LL_RCC_DisableIT_HSI48RDY(void)
{
CLEAR_BIT(RCC->CIR, RCC_CIR_HSI48RDYIE);
}
/**
* @brief Checks if LSI ready interrupt source is enabled or disabled.
* @rmtoll CIR LSIRDYIE LL_RCC_IsEnabledIT_LSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSIRDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_LSIRDYIE) == (RCC_CIR_LSIRDYIE)) ? 1UL : 0UL);
}
#if defined(RCC_LSE_SUPPORT)
/**
* @brief Checks if LSE ready interrupt source is enabled or disabled.
* @rmtoll CIR LSERDYIE LL_RCC_IsEnabledIT_LSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_LSERDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_LSERDYIE) == (RCC_CIR_LSERDYIE)) ? 1UL : 0UL);
}
#endif
/**
* @brief Checks if HSI ready interrupt source is enabled or disabled.
* @rmtoll CIR HSIRDYIE LL_RCC_IsEnabledIT_HSIRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSIRDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_HSIRDYIE) == (RCC_CIR_HSIRDYIE)) ? 1UL : 0UL);
}
/**
* @brief Checks if HSE ready interrupt source is enabled or disabled.
* @rmtoll CIR HSERDYIE LL_RCC_IsEnabledIT_HSERDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSERDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_HSERDYIE) == (RCC_CIR_HSERDYIE)) ? 1UL : 0UL);
}
#if defined(RCC_PLL_SUPPORT)
/**
* @brief Checks if PLL ready interrupt source is enabled or disabled.
* @rmtoll CIR PLLRDYIE LL_RCC_IsEnabledIT_PLLRDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_PLLRDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_PLLRDYIE) == (RCC_CIR_PLLRDYIE)) ? 1UL : 0UL);
}
#endif
/**
* @brief Checks if HSI48 ready interrupt source is enabled or disabled.
* @rmtoll CIR HSI48RDYIE LL_RCC_IsEnabledIT_HSI48RDY
* @retval State of bit (1 or 0).
*/
__STATIC_INLINE uint32_t LL_RCC_IsEnabledIT_HSI48RDY(void)
{
return ((READ_BIT(RCC->CIR, RCC_CIR_HSI48RDYIE) == (RCC_CIR_HSI48RDYIE)) ? 1UL : 0UL);
}
/**
* @}
*/
#if defined(USE_FULL_LL_DRIVER)
/** @defgroup RCC_LL_EF_Init De-initialization function
* @{
*/
ErrorStatus LL_RCC_DeInit(void);
/**
* @}
*/
/** @defgroup RCC_LL_EF_Get_Freq Get system and peripherals clocks frequency functions
* @{
*/
void LL_RCC_GetSystemClocksFreq(LL_RCC_ClocksTypeDef *RCC_Clocks);
uint32_t LL_RCC_GetMCOClockFreq(uint32_t MCOx);
#if defined(RTC)
uint32_t LL_RCC_GetRTCClockFreq(void);
#endif
uint32_t LL_RCC_GetUSBClockFreq(void);
#if defined(CANFD)
uint32_t LL_RCC_GetCANFDClockFreq(void);
#endif /* CANFD */
uint32_t LL_RCC_GetADCClockFreq(void);
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */
/**
* @}
*/
/**
* @}
*/
#endif /* defined(RCC) */
/**
* @}
*/
#ifdef __cplusplus
}
#endif
#endif /* __PY32F403_LL_RCC_H */
/************************ (C) COPYRIGHT Puya *****END OF FILE****/