You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

338 lines
11 KiB
C

/**
******************************************************************************
* @file system_py32f403.c
* @author MCU Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2023 Puya Semiconductor Co.
* All rights reserved.</center></h2>
*
* This software component is licensed by Puya under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
* @attention
*
* <h2><center>&copy; Copyright (c) 2016 STMicroelectronics.
* All rights reserved.</center></h2>
*
* This software component is licensed by ST under BSD 3-Clause license,
* the "License"; You may not use this file except in compliance with the
* License. You may obtain a copy of the License at:
* opensource.org/licenses/BSD-3-Clause
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
/** @addtogroup py32f403_system
* @{
*/
/** @addtogroup py32f403_System_Private_Includes
* @{
*/
#include "py32f4xx.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE ((uint32_t)24000000) /*!< Default value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE ((uint32_t)8000000) /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
/*!< Uncomment the following line if you need to relocate your vector Table in
Internal SRAM. */
/* #define VECT_TAB_SRAM */
#define VECT_TAB_OFFSET 0x00 /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
/******************************************************************************/
/** @addtogroup PY32F403_System_Private_Variables
* @{
*/
/* This variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = HSI_VALUE;//HSI_VALUE;//((uint32_t)96000000);
const uint8_t AHBPrescTable[16] = {0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 6, 7, 8, 9};
const uint8_t APBPrescTable[8] = {0, 0, 0, 0, 1, 2, 3, 4};
/**
* @}
*/
/** @addtogroup PY32F403_System_Private_Functions
* @{
*/
void APP_ErrorProc(void)
{
HAL_NVIC_SystemReset();
}
/**
* @brief Load trim.
* @param None
* @retval None
*/
void APP_LoadTrim(void)
{
uint32_t OPTAddr[]={0x1FFF5110,0x1FFF5114,0x1FFF5118,0x1FFF5148,0x1FFF514C,0x1FFF5600,0x1FFF5604,0x1FFF5200,0x1FFF5204,\
0x1FFF5140,0x1FFF5144,0x1FFF5208,0x1FFF5120,0x1FFF5124,0x1FFF5128,0x1FFF512C,0x1FFF5130,0x1FFF5134};
uint32_t OPTValue[18] = {0};
uint32_t RegAddr[]={0x40022208,0x4002220C,0x40022220,0x40022228,0x40022224,0x4002221C,0x4002222C,0x40022210,0x40022214,0x40022218};
uint32_t RegMask[]={0x0FFF0FFF,0x000000FF,0x001F000F,0x1FFF07FF,0x07FF07FF,0x003F003F,0x0000003F,0xFFFFFFFF,0xFFFFFFFF,0x0FFF0FFF};
uint32_t RegValue[10] = {0};
uint32_t i = 0;
uint32_t j = 0;
uint32_t temp = 0;
/* Enable FLASH_KEYR */
*((__IO uint32_t *)(0x40022008)) = 0x45670123;
*((__IO uint32_t *)(0x40022008)) = 0xcdef89ab;
/* Enable FLASH_OPTKEYR */
*((__IO uint32_t *)(0x4002200c)) = 0x08192A3B;
*((__IO uint32_t *)(0x4002200c)) = 0x4C5D6E7F;
/* Enable FLASH_TESTKEYR */
*((__IO uint32_t *)(0x4002228c)) = 0x5D7F4051;
*((__IO uint32_t *)(0x4002228c)) = 0x46CE2763;
/*********************************************/
for (i=0; i < 18; i++)
{
j=3;
do
{
temp = READ_REG(*((__IO uint32_t *)(OPTAddr[i])));
if ((temp >> 16U) == ((~temp) & 0xFFFFU))
{
OPTValue[i] = temp;
break;
}
}while(--j);
if(j == 0)
{
APP_ErrorProc();
}
}
/*(1) 0x40022208*/
RegValue[0] = (OPTValue[0] & 0x0FFF) | ((OPTValue[1] & 0x0FFF) << 16);
/*(2) 0x4002220C*/
RegValue[1] = (OPTValue[2] & 0x00FF);
/*(3) 0x40022220*/
RegValue[2] = (OPTValue[3] & 0x000F) | ((OPTValue[4] & 0x001F) << 16);
/*(4) 0x40022228*/
RegValue[3] = (OPTValue[5] & 0x07FF) | ((OPTValue[6] & 0x1FFF) << 16);
/*(5) 0x40022224*/
RegValue[4] = (OPTValue[7] & 0x07FF) | ((OPTValue[8] & 0x07FF) << 16);
/*(6) 0x4002221C*/
RegValue[5] = (OPTValue[9] & 0x003F) | ((OPTValue[10] & 0x003F) << 16);
/*(7) 0x4002222C*/
RegValue[6] = (OPTValue[11] & 0x003F);
/*(8) 0x40022210*/
RegValue[7] = (OPTValue[12] & 0xFFFF) | ((OPTValue[13] & 0xFFFF) << 16);
/*(9) 0x40022214*/
RegValue[8] = (OPTValue[14] & 0xFFFF) | ((OPTValue[15] & 0xFFFF) << 16);
/*(10) 0x40022218*/
RegValue[9] = (OPTValue[16] & 0x0FFF) | ((OPTValue[17] & 0x0FFF) << 16);
for(i=0; i < 10;i++)
{
temp = READ_REG(*((__IO uint32_t *)(RegAddr[i])));
if (RegValue[i] != (temp & RegMask[i]))
{
MODIFY_REG(*((__IO uint32_t *)(RegAddr[i])), RegMask[i], RegValue[i]);
}
}
/*********************************************/
/* Enable TRIM update */
*((__IO uint32_t *)(0x40022200)) |= 0x01;
/* Wait ten nop delays */
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
__NOP();
/* Disable TRIM update */
*((__IO uint32_t *)(0x40022200)) &= (~0x01);
for(i=0; i < 10;i++)
{
temp = READ_REG(*((__IO uint32_t *)(RegAddr[i])));
if (RegValue[i] != (temp & RegMask[i]))
{
APP_ErrorProc();
}
}
/* Disable FLASH_OPTKEYR、FLASH_TESTKEYR */
*((__IO uint32_t *)(0x40022014)) |= 0x40000000;
/* Disable FLASH_KEYR、FLASH_TESTKEYR */
*((__IO uint32_t *)(0x40022014)) |= 0x80000000;
}
/**
* @brief Setup the microcontroller system
* Initialize the FPU setting, vector table location and External memory
* configuration.
* @param None
* @retval None
*/
void SystemInit(void)
{
/* Load trim */
APP_LoadTrim();
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << 10*2)|(3UL << 11*2)); /* set CP10 and CP11 Full Access */
#endif
/* Configure the Vector Table location add offset address ------------------*/
#ifdef VECT_TAB_SRAM
SCB->VTOR = SRAM_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#else
SCB->VTOR = FLASH_BASE | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal FLASH */
#endif
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(*)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(**)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(**)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (*) HSI_VALUE is a constant defined in py32f403_hal_conf.h file (default value
* 8 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (**) HSE_VALUE is a constant defined in py32f403_hal_conf.h file (its value
* depends on the application requirements), user has to ensure that HSE_VALUE
* is same as the real frequency of the crystal used. Otherwise, this function
* may have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate(void)
{
const uint8_t aPLLMULFactorTable[64] = {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, \
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, \
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, \
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 63, 63};
const uint8_t aPredivFactorTable[2] = {1, 2};
uint32_t tmpreg = 0U, prediv = 0U, pllclk = 0U, pllmul = 0U;
uint32_t tmp = 0;
tmpreg = RCC->CFGR;
/* Get SYSCLK source -------------------------------------------------------*/
switch (tmpreg & RCC_CFGR_SWS)
{
case 0x00: /* HSI used as system clock source */
{
SystemCoreClock = HSI_VALUE;
break;
}
case 0x04: /* HSE used as system clock */
{
SystemCoreClock = HSE_VALUE;
break;
}
case 0x08: /* PLL used as system clock */
{
pllmul = aPLLMULFactorTable[(((tmpreg&(RCC_CFGR_PLLMULL_4|RCC_CFGR_PLLMULL_5))>>7) | (tmpreg&(RCC_CFGR_PLLMULL_0| \
RCC_CFGR_PLLMULL_1|RCC_CFGR_PLLMULL_2|RCC_CFGR_PLLMULL_3)))>>RCC_CFGR_PLLMULL_Pos];
if ((tmpreg & RCC_CFGR_PLLSRC) == RCC_CFGR_PLLSRC)
{
prediv = aPredivFactorTable[(uint32_t)(RCC->CFGR & RCC_CFGR_PLLXTPRE) >> RCC_CFGR_PLLXTPRE_Pos];
/* HSE used as PLL clock source : PLLCLK = HSE/PREDIV1 * PLLMUL */
pllclk = (uint32_t)((HSE_VALUE * pllmul) / prediv);
}
else
{
/* HSI used as PLL clock source : PLLCLK = HSI * PLLMUL */
pllclk = (uint32_t)(HSI_VALUE * pllmul);
}
SystemCoreClock = pllclk;
break;
}
default:
{
break;
}
}
/* Get HCLK prescaler */
tmp = AHBPrescTable[((RCC->CFGR & RCC_CFGR_HPRE) >> RCC_CFGR_HPRE_Pos)];
SystemCoreClock >>= tmp;
}
/**
* @}
*/
/************************ (C) COPYRIGHT Puya *****END OF FILE******************/