|
|
|
|
@ -7002,6 +7002,7 @@ typedef struct
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief SVM linear instance init function
|
|
|
|
|
* @param[in] S Parameters for SVM functions
|
|
|
|
|
* @param[in] nbOfSupportVectors Number of support vectors
|
|
|
|
|
* @param[in] vectorDimension Dimension of vector space
|
|
|
|
|
* @param[in] intercept Intercept
|
|
|
|
|
@ -7023,9 +7024,9 @@ void arm_svm_linear_init_f32(arm_svm_linear_instance_f32 *S,
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief SVM linear prediction
|
|
|
|
|
* @param[in] *S points to an instance of the linear SVM structure.
|
|
|
|
|
* @param[in] vec_in pointer to input vector
|
|
|
|
|
* @param[out] *pResult decision value
|
|
|
|
|
* @param[in] S points to an instance of the linear SVM structure.
|
|
|
|
|
* @param[in] in pointer to input vector
|
|
|
|
|
* @param[out] pResult decision value
|
|
|
|
|
* @return none.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
@ -7037,6 +7038,7 @@ void arm_svm_linear_predict_f32(const arm_svm_linear_instance_f32 *S,
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief SVM polynomial instance init function
|
|
|
|
|
* @param[in] S points to an instance of the polynomial SVM structure.
|
|
|
|
|
* @param[in] nbOfSupportVectors Number of support vectors
|
|
|
|
|
* @param[in] vectorDimension Dimension of vector space
|
|
|
|
|
* @param[in] intercept Intercept
|
|
|
|
|
@ -7065,9 +7067,9 @@ void arm_svm_polynomial_init_f32(arm_svm_polynomial_instance_f32 *S,
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief SVM polynomial prediction
|
|
|
|
|
* @param[in] *S points to an instance of the polynomial SVM structure.
|
|
|
|
|
* @param[in] vec_in pointer to input vector
|
|
|
|
|
* @param[out] *pResult decision value
|
|
|
|
|
* @param[in] S points to an instance of the polynomial SVM structure.
|
|
|
|
|
* @param[in] in pointer to input vector
|
|
|
|
|
* @param[out] pResult decision value
|
|
|
|
|
* @return none.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
@ -7079,6 +7081,7 @@ void arm_svm_polynomial_predict_f32(const arm_svm_polynomial_instance_f32 *S,
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief SVM radial basis function instance init function
|
|
|
|
|
* @param[in] S points to an instance of the polynomial SVM structure.
|
|
|
|
|
* @param[in] nbOfSupportVectors Number of support vectors
|
|
|
|
|
* @param[in] vectorDimension Dimension of vector space
|
|
|
|
|
* @param[in] intercept Intercept
|
|
|
|
|
@ -7102,9 +7105,9 @@ void arm_svm_rbf_init_f32(arm_svm_rbf_instance_f32 *S,
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief SVM rbf prediction
|
|
|
|
|
* @param[in] *S points to an instance of the rbf SVM structure.
|
|
|
|
|
* @param[in] vec_in pointer to input vector
|
|
|
|
|
* @param[out] *pResult decision value
|
|
|
|
|
* @param[in] S points to an instance of the rbf SVM structure.
|
|
|
|
|
* @param[in] in pointer to input vector
|
|
|
|
|
* @param[out] pResult decision value
|
|
|
|
|
* @return none.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
@ -7115,6 +7118,7 @@ void arm_svm_rbf_predict_f32(const arm_svm_rbf_instance_f32 *S,
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief SVM sigmoid instance init function
|
|
|
|
|
* @param[in] S points to an instance of the rbf SVM structure.
|
|
|
|
|
* @param[in] nbOfSupportVectors Number of support vectors
|
|
|
|
|
* @param[in] vectorDimension Dimension of vector space
|
|
|
|
|
* @param[in] intercept Intercept
|
|
|
|
|
@ -7140,9 +7144,9 @@ void arm_svm_sigmoid_init_f32(arm_svm_sigmoid_instance_f32 *S,
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* @brief SVM sigmoid prediction
|
|
|
|
|
* @param[in] *S points to an instance of the rbf SVM structure.
|
|
|
|
|
* @param[in] vec_in pointer to input vector
|
|
|
|
|
* @param[out] *pResult decision value
|
|
|
|
|
* @param[in] S points to an instance of the rbf SVM structure.
|
|
|
|
|
* @param[in] in pointer to input vector
|
|
|
|
|
* @param[out] pResult decision value
|
|
|
|
|
* @return none.
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
@ -7168,9 +7172,9 @@ typedef struct
|
|
|
|
|
/**
|
|
|
|
|
* @brief Naive Gaussian Bayesian Estimator
|
|
|
|
|
*
|
|
|
|
|
* @param[in] *S points to a naive bayes instance structure
|
|
|
|
|
* @param[in] *in points to the elements of the input vector.
|
|
|
|
|
* @param[in] *pBuffer points to a buffer of length numberOfClasses
|
|
|
|
|
* @param[in] S points to a naive bayes instance structure
|
|
|
|
|
* @param[in] in points to the elements of the input vector.
|
|
|
|
|
* @param[in] pBuffer points to a buffer of length numberOfClasses
|
|
|
|
|
* @return The predicted class
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
@ -7198,7 +7202,7 @@ uint32_t arm_gaussian_naive_bayes_predict_f32(const arm_gaussian_naive_bayes_ins
|
|
|
|
|
* The max xm of the values if extracted and the function is computing:
|
|
|
|
|
* xm + ln(exp(x1 - xm) + ... + exp(xn - xm))
|
|
|
|
|
*
|
|
|
|
|
* @param[in] *in points to an array of input values.
|
|
|
|
|
* @param[in] in points to an array of input values.
|
|
|
|
|
* @param[in] blockSize number of samples in the input array.
|
|
|
|
|
* @return LogSumExp
|
|
|
|
|
*
|
|
|
|
|
@ -7212,10 +7216,10 @@ float32_t arm_logsumexp_f32(const float32_t *in, uint32_t blockSize);
|
|
|
|
|
*
|
|
|
|
|
* Vectors are containing the log of the samples
|
|
|
|
|
*
|
|
|
|
|
* @param[in] *pSrcA points to the first input vector
|
|
|
|
|
* @param[in] *pSrcB points to the second input vector
|
|
|
|
|
* @param[in] pSrcA points to the first input vector
|
|
|
|
|
* @param[in] pSrcB points to the second input vector
|
|
|
|
|
* @param[in] blockSize number of samples in each vector
|
|
|
|
|
* @param[in] *pTmpBuffer temporary buffer of length blockSize
|
|
|
|
|
* @param[in] pTmpBuffer temporary buffer of length blockSize
|
|
|
|
|
* @return The log of the dot product .
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
@ -7229,7 +7233,7 @@ float32_t arm_logsumexp_dot_prod_f32(const float32_t * pSrcA,
|
|
|
|
|
/**
|
|
|
|
|
* @brief Entropy
|
|
|
|
|
*
|
|
|
|
|
* @param[in] *pSrcA points to an array of input values.
|
|
|
|
|
* @param[in] pSrcA points to an array of input values.
|
|
|
|
|
* @param[in] blockSize number of samples in the input array.
|
|
|
|
|
* @return Entropy -Sum(p ln p)
|
|
|
|
|
*
|
|
|
|
|
@ -7242,8 +7246,8 @@ float32_t arm_entropy_f32(const float32_t * pSrcA,uint32_t blockSize);
|
|
|
|
|
/**
|
|
|
|
|
* @brief Kullback-Leibler
|
|
|
|
|
*
|
|
|
|
|
* @param[in] *pSrcA points to an array of input values for probaility distribution A.
|
|
|
|
|
* @param[in] *pSrcB points to an array of input values for probaility distribution B.
|
|
|
|
|
* @param[in] pSrcA points to an array of input values for probaility distribution A.
|
|
|
|
|
* @param[in] pSrcB points to an array of input values for probaility distribution B.
|
|
|
|
|
* @param[in] blockSize number of samples in the input array.
|
|
|
|
|
* @return Kullback-Leibler divergence D(A || B)
|
|
|
|
|
*
|
|
|
|
|
@ -7257,8 +7261,8 @@ float32_t arm_kullback_leibler_f32(const float32_t * pSrcA
|
|
|
|
|
* @brief Weighted sum
|
|
|
|
|
*
|
|
|
|
|
*
|
|
|
|
|
* @param[in] *in points to an array of input values.
|
|
|
|
|
* @param[in] *weigths weights
|
|
|
|
|
* @param[in] in points to an array of input values.
|
|
|
|
|
* @param[in] weigths weights
|
|
|
|
|
* @param[in] blockSize number of samples in the input array.
|
|
|
|
|
* @return Weighted sum
|
|
|
|
|
*
|
|
|
|
|
@ -7272,9 +7276,9 @@ float32_t arm_weighted_sum_f32(const float32_t *in
|
|
|
|
|
* @brief Barycenter
|
|
|
|
|
*
|
|
|
|
|
*
|
|
|
|
|
* @param[in] *in List of points
|
|
|
|
|
* @param[in] *in List of weights
|
|
|
|
|
* @param[out] *out Barycenter
|
|
|
|
|
* @param[in] in List of points
|
|
|
|
|
* @param[in] weights Weights of the points
|
|
|
|
|
* @param[out] out Barycenter
|
|
|
|
|
* @param[in] nbVectors number of vectors
|
|
|
|
|
* @param[in] vecDim Dimension of space
|
|
|
|
|
* @return None
|
|
|
|
|
@ -7411,7 +7415,8 @@ float32_t arm_minkowski_distance_f32(const float32_t *pA,const float32_t *pB, in
|
|
|
|
|
*
|
|
|
|
|
* @param[in] pA First vector of packed booleans
|
|
|
|
|
* @param[in] pB Second vector of packed booleans
|
|
|
|
|
* @param[in] numberOfBools Number of booleans
|
|
|
|
|
* @param[in] order Distance order
|
|
|
|
|
* @param[in] blockSize Number of samples
|
|
|
|
|
* @return distance
|
|
|
|
|
*
|
|
|
|
|
*/
|
|
|
|
|
|